

IMPROVING THE CYBERSECURITY OF CYBER-PHYSICAL SYSTEMS

THROUGH BEHAVIORAL GAME THEORY AND MODEL CHECKING IN

PRACTICE AND IN EDUCATION

DISSERTATION

Seth T. Hamman

AFIT-ENG-DS-16-S-010

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

United States Government. This material is declared a work of the U.S. Government and

is not subject to copyright protection in the United States.

AFIT-ENG-DS-16-S-010

IMPROVING THE CYBERSECURITY OF CYBER-PHYSICAL SYSTEMS

THROUGH BEHAVIORAL GAME THEORY AND MODEL CHECKING IN

PRACTICE AND IN EDUCATION

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Seth T. Hamman, BA, MS

September 2016

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-DS-16-S-010

IMPROVING THE CYBERSECURITY OF CYBER-PHYSICAL SYSTEMS

THROUGH BEHAVIORAL GAME THEORY AND MODEL CHECKING IN

PRACTICE AND IN EDUCATION

Seth T. Hamman, BA, MS

Committee Membership:

Kenneth M. Hopkinson, PhD

Chairman

Barry E. Mullins, PhD, PE

Member

Michael R. Grimaila, PhD, CISM, CISSP

Member

ADEDJI B. BADIRU, PhD

Dean, Graduate School of Engineering and Management

iv

AFIT-ENG-DS-16-S-010

Abstract

This dissertation presents automated methods based on behavioral game theory

and model checking to improve the cybersecurity of cyber-physical systems (CPSs) and

advocates teaching certain foundational principles of these methods to cybersecurity

students. First, it encodes behavioral game theory’s concept of level-k reasoning into an

integer linear program that models a newly defined security Colonel Blotto game. This

approach is designed to achieve an efficient allocation of scarce protection resources by

anticipating attack allocations. A human subjects experiment based on a CPS

infrastructure demonstrates its effectiveness. Next, it rigorously defines the term

adversarial thinking, one of cybersecurity education’s most important and elusive

learning objectives, but for which no proper definition exists. It spells out what it means

to “think like a hacker” by examining the characteristic thought processes of hackers

through the lens of Sternberg’s triarchic theory of intelligence. Next, a classroom

experiment demonstrates that teaching basic game theory concepts to cybersecurity

students significantly improves their strategic reasoning abilities. Finally, this

dissertation applies the SPIN model checker to an electric power protection system and

demonstrates a straightforward and effective technique for rigorously characterizing the

degree of fault tolerance of complex CPSs, a key step in improving their defensive

posture.

v

AFIT-ENG-DS-16-S-010

To the wife of my youth

vi

Acknowledgments

First, thank you to Dr. Hopkinson, my advisor, for his genuine kindness and for

always being willing and available to help me. Also thank you to my committee

members for their support, guidance, and feedback. Finally, and most of all, thank you to

my family, without whose sacrifice this work would not have been possible.

 Seth T. Hamman

vii

Table of Contents

Page

Abstract .. iv

Table of Contents .. vii

List of Figures .. xi

List of Tables .. xii

I. Introduction ..1

II. Applying Behavioral Game Theory to Cyber-Physical Systems Protection

Planning ...6

2.1 Introduction ...6

2.2 Related Work...8

2.3 Approach ...9

2.3.1 Level-k Reasoning ... 9

2.3.2 The Colonel Blotto Game .. 11

2.3.3 Calculating Level-k Strategies ... 14

2.4 Illustration ...16

2.4.1 Attacking the Smart Grid ... 16

2.5 Validation ..19

2.5.1 Experimental Details ... 19

2.5.2 Experimental Results ... 21

2.6 Conclusion ...24

III. Teaching Adversarial Thinking for Cybersecurity ...26

3.1 Introduction ...26

viii

3.2 Background ...27

3.2.1 Hacker Definition .. 27

3.2.2 Definitions of Adversarial Thinking .. 28

3.2.3 Cognitive Psychology .. 29

3.3 The Triarchic Theory Applied to Hackers ..31

3.3.1 Analytical... 31

3.3.2 Creative .. 32

3.3.3 Practical ... 34

3.3.4 Summary .. 35

3.3.5 Adversarial Thinking Definition ... 37

3.4 Adversarial Thinking for Cybersecurity Education ..37

3.4.2 Technological Capabilities .. 38

3.4.3 Unconventional Perspectives ... 38

3.4.4 Strategic Reasoning ... 39

3.5 Recommendations ...40

3.6 Conclusion ...41

IV. Teaching Game Theory to Improve Strategic Reasoning in Cybersecurity

Students ..42

4.1 Introduction ...42

4.2 Background ...43

4.2.1 Game Theory ... 43

4.2.2 Teaching Game Theory to Improve Strategic Reasoning 45

4.3 Study Methodology ...46

ix

4.3.1 Study Design.. 46

4.3.2 The Treatment .. 47

4.3.3 Measurement Instrument ... 47

4.4 Results ...50

4.4.1 Data Analysis ... 50

4.4.2 The Validity and Reliability of the Instrument .. 52

4.4.3 Threats to Internal and External Validity .. 53

4.5 Discussion ...55

4.6 Conclusion ...57

V. A Model Checking Approach to Characterizing the Fault Tolerance of Smart Grid

Protection Systems ...59

5.1 Introduction ...59

5.2 Related Work...61

5.3 SPIN Background ..62

5.4 SPIN Smart Grid Software Case Study ...67

5.4.1 Tong’s WABPS ... 67

5.4.2 Modeling Tong’s WABPS... 72

5.4.3 SPIN Testing Tong’s WABPS .. 74

5.4.4 SPIN Results .. 78

5.5 Conclusion ...79

VI. Conclusion ..81

6.1 Future Work ..84

Appendix A: The Data Breach Measurement Instrument ..87

x

Appendix B: The SPIN Model of Tong’s WABPS ...88

Bibliography ..96

xi

List of Figures

Page

Figure 1. The distribution of 13,030 MWs over the 30 distribution substations in [25] ..17

Figure 2. The aggregate human attack strategies (n=92) ..19

Figure 3. The results of the defense competition (n=98) ..21

Figure 4. Data Breach aggregated attacks (n=33) ...49

Figure 5. Treatment group pre-post rankings comparison (n=26)50

Figure 6. Control group pre-post rankings comparison (n=25).50

Figure 7. Treatment and control pretests rankings comparison (n=26, 25)54

Figure 8. The PROMELA source code for a simple example program............................64

Figure 9. A SPIN simulation run of the example program ...65

Figure 10. The SPIN verification run of the example program ..65

Figure 11. The “trail” produced by SPIN showing a specific failure scenario66

Figure 12. A detailed state transition diagram of LDAs in Tong’s WABPS [76]67

Figure 13. WABPS’s layout on the IEEE 14-bus test case [76]69

Figure 14. The nondeterministic if statement that verifies all combinations of failures ...73

Figure 15. Simulation run of WABPS model testing three total IED failures and showing

the system functioning correctly ..76

Figure 16. The trail simulation run showing one of the two ways that the WABPS fails

weak correctness when three total IED failures occur ...78

xii

List of Tables

Page

Table 1. The L0-L5 Allocations of 100 Defensive Units Across the 30 Sites18

Table 2. Competition Result Details for Select Defense Strategies (n=98)22

Table 3. Summary of Sternberg’s Triarchic Theory of Intelligence30

Table 4. The Triarchic Theory Applied to Adversarial Thinking for Cybersecurity........36

Table 5. Summary of Adversarial Thinking Instruction in Cybersecurity Education40

Table 6. Analytical and Behavioral Game Theory Comparison44

Table 7. Game Theory Lecture Topics ...46

Table 8. Comparisons of Group Performance Rankings ..51

Table 9. Average Allocation of Hours Across Days...52

Table 10. IEDs Directly Incorporated into LDA Line State Calculations70

Table 11. Results of SPIN’s Fault Tolerance Verification of Tong's WABPS77

1

IMPROVING THE CYBERSECURITY OF CYBER-PHYSICAL SYSTEMS

THROUGH BEHAVIORAL GAME THEORY AND MODEL CHECKING IN

PRACTICE AND IN EDUCATION

I. Introduction

Cyber-physical systems (CPSs) integrate computer processing and physical

sensors in a continuous feedback loop to obtain efficient control and oversight over an

environment. Because of the economic and societal potential of such systems, large

investments are being made worldwide to advance CPS technology. However, due to the

physical distribution of their critical components and their intrinsically networked nature,

they “introduce safety and reliability requirements qualitatively different from those in

general purpose computing” [1].

This dissertation presents automated methods based on behavioral game theory

and model checking to improve the cybersecurity of CPSs, and advocates teaching

certain foundational principles of these methods to cybersecurity students. For

illustrative purposes, it applies its findings to the smart grid, a CPS which is a network of

computers and power infrastructure that “enhances customers’ and utilities’ ability to

monitor, control, and predict energy use” [2]. The overarching research questions this

dissertation examines are:

RQ1: Can automated reasoning, including model checking and integer linear

programs that model game theoretic concepts, be applied to improve the

cybersecurity of CPSs? If so, can insights gained from these techniques be

effectively imparted to cybersecurity students?

2

It examines these questions over four specific and distinct research components that

comprise Chapters 2-5 of this dissertation. Summaries of these components follow.

Chapter 2 explores the scarce resource allocation problem inherent in protecting

CPSs from attack by intelligent adversaries. It poses the following research question:

RQ2: Can the concept of level-k reasoning be automated to create CPS defense

allocations that counteract human-generated attack allocations?

Specifically, the chapter seeks to derive protection resource allocations optimized to

obtain the biggest “bang for the buck.” Behavioral game theory’s concept of level-k

reasoning provides the framework for modeling the strategic nature of intelligent

attackers and insights into predicting their most likely attack allocations. The approach

leverages an integer linear program that “solves” the newly introduced security Colonel

Blotto game, which models allocating scarce resources across a CPS’s infrastructure, for

any level of level-k reasoning. The effectiveness of the approach is validated by entering

its automated defense allocations into an attack and defend competition conducted with

human subjects and based on a published smart grid protection system.

Chapter 3 seeks to position the key insights gained from applying level-k

reasoning to CPS protection planning in Chapter 2 within an accepted framework for

educating the next generation of cybersecurity professionals. It does so by applying

cognitive psychology research to the concept of adversarial thinking for cybersecurity. It

examines the research question:

RQ3: Can Sternberg’s triarchic theory of intelligence provide a paradigm for

defining adversarial thinking for cybersecurity that identifies practicable student

learning outcomes?

3

The chapter highlights the fact that working from the simplistic definition that adversarial

thinking means “the ability to think like a hacker” makes framing student learning

outcomes difficult, and without proper learning outcomes, it is not possible to create

appropriate instructional materials. It argues that a better understanding of the concept of

adversarial thinking is needed in order to improve this all-important aspect of

cybersecurity education. The chapter sheds new light on adversarial thinking by

exploring it through the lens of Sternberg’s triarchic theory of intelligence. The triarchic

theory’s division of the intellect into the analytical, creative, and practical components

provides a helpful framework for examining the characteristic thought processes of

hackers. This exploration produces a novel, multidimensional definition of adversarial

thinking that leads naturally to three clearly defined learning outcomes, one of which

focuses on developing the strategic reasoning abilities of cybersecurity students.

Based on the new definition of adversarial thinking from Chapter 3, Chapter 4

homes in on the challenge of developing the strategic reasoning abilities of cybersecurity

students. It examines the research question:

RQ4: Does learning basic game theory concepts improve a student’s ability to

anticipate the strategic choices made by other people?

The chapter reiterates how strategic reasoning is an important, but often overlooked,

aspect of the practice of cybersecurity. It proposes teaching basic game theory to

cybersecurity students to help develop their strategic reasoning abilities. To demonstrate

the promise of such an approach, it details a pretest-posttest educational experiment with

a control group and an original measurement instrument. Details of the treatment, which

consisted of two hours of interactive lectures on both traditional and behavioral game

4

theory, are also provided. The classroom experiment demonstrates that learning about

game theory resulted in a statistically significant improvement in the students’ abilities to

anticipate the strategic choices made by others. Additionally, the chapter suggests that

learning about game theory in a cybersecurity class has the potential to fundamentally

alter the way students view the practice of cybersecurity. It may help to orient them

around the adversarial conflict that is at the heart of cybersecurity, and this could lead to

a more strategic-minded, and therefore better equipped, cybersecurity workforce.

Finally, in Chapter 5, attention is focused on the cybersecurity and reliability

challenges posed by CPSs. It explores how the discipline of formal methods—the

applied mathematics of design verification—can be applied to rigorously characterize the

fault tolerance of CPSs. It examines the research question:

RQ5: Can the SPIN model checker be applied to automate the identification of

the degree of fault tolerance of CPSs?

The chapter describes how as distributed, communication-based protection systems (a

type of CPS) become more prevalent in the emerging smart grid, the task of critically

assessing their reliability has become increasingly challenging due to the complexity of

their underlying software. It demonstrates that the discipline of software model checking

can be applied to smart grid protection software designs to rigorously assess their fault

tolerance. It applies the SPIN model checker (SPIN) to a published wide-area backup

protection system (WABPS)—a smart grid technology. The WABPS was specifically

architected to be highly reliable under various kinds of common failure scenarios,

including mechanical malfunctions, erroneous sensor readings, and communication

failures. However, because of its built-in redundancy and decentralized peer-to-peer

5

design, calculating its precise fault tolerance is non-trivial. The chapter shows how SPIN

can be applied to the WABPS’s design to brute-force prove the limits of the number and

types of failures that can occur while the system remains able to successfully perform its

function. The same technique is applicable to a wide variety of CPS software designs,

and it provides key insights into understanding the security vulnerabilities of such

systems.

 In summary, this dissertation examines important research questions involving the

cybersecurity of CPSs and has two primary focuses. One is on applying its insights in an

automated fashion, which may help lower the barrier to their acceptance by the

professional community. The other focus is on adapting its research findings to

educational contexts, which will help better equip the next generation of cybersecurity

professionals.

6

II. Applying Behavioral Game Theory to Cyber-Physical Systems Protection

Planning*

2.1 Introduction

As civilization enters the fourth industrial revolution (Industry 4.0), cyber-

physical systems (CPSs) will play an increasingly expanding role in society [3] [4].

Because society’s dependence on CPSs is directly proportional to their attractiveness to

terrorists and other adversaries who are motivated to inflict maximum harm on their

enemies [5], protection planning is a vital aspect of the ongoing operation of any real-

world CPS.

Large-scale CPSs pose some unique security challenges because they may be

geographically dispersed and located in remote areas where it is difficult to provide

physical security [6]. Providing adequate protection resources in such contexts is

infeasible due to the large attack surface and the limited availability of man hours and

money. Therefore, large-scale CPS protection planning is necessarily an exercise in the

allocation of scarce protection resources [7].

Not only are protection resources scarce, but they must be allocated in light of the

fact that adversaries are strategic actors. The U.S. Office of Homeland Security warns

that adversaries (e.g., terrorists, enemy nation states, etc.) perform reconnaissance and

undertake intensive planning before making an attack [8]. Any CPS protection scheme

that does not take into account attack scenarios waged by intelligent adversaries is naïve

and inadequate.

* This chapter is based on research that will be published in a chapter in an upcoming book on cyber-physical systems:

S. Hamman, K. Hopkinson L. McCarty, “Applying behavioral game theory to cyber-physical systems protection planning,” in
Cyber-physical systems: foundations, principles, and applications, Elsevier, Academic Press, (projected fall 2016).

7

The research presented in this chapter lays the foundation for approaching the

challenge of CPS protection planning in view of these realities. The approach is to model

the protection scenario as a newly formulated security game based on the Colonel Blotto

(CB) game from game theory. A security game has been defined as a “game-theoretic

model that captures essential characteristics of resource allocation decision making” [9].

Then, the security game is “solved” by applying the concept of level-k reasoning from

behavioral game theory. Behavioral game theory makes it possible to model the strategic

nature of intelligent adversaries and provides insights into anticipating and countering

their most likely actions. The goal of this approach is to neither over- nor under-protect

the critical sites in a CPS infrastructure, thereby achieving the biggest “bang for the

buck.”

Furthermore, much of the human element involved in protection planning is

eliminated by leveraging a mathematical programming solver to determine level-k

solutions to an integer linear program (ILP) which models the security CB game. The

solver outputs a precise allocation of protection resources across critical sites. The ILP is

applicable to any size CPS and any amount of protection resources.

In order to provide a clear illustration of how the methodology can be applied to a

real-world CPS, this chapter demonstrates how it would allocate protection resources

across a notional smart grid special protection system (SPS).

Lastly, the approach is validated by conducting an attack competition with human

subjects based on the parameters of the SPS. Using human subjects is the only legitimate

way to validate the effectiveness of an approach that has as its goal the countering of

attacks waged by intelligent adversaries. Other ways to measure effectiveness, including

8

performing computer simulations, generating random attacks, or even constructing

mathematically rigorous models, fall short because it cannot be convincingly

demonstrated that they fully capture the intelligence and strategic nature of human

beings.

2.2 Related Work

This work is related to other research efforts that attempt to allocate scarce

protection resources effectively over CPSs. [10] promotes building attack trees to find

the most damaging attack paths, thereby identifying where protection resources are

needed most. Similarly, [7] recognizes the impossibility of protecting every aspect of a

CPS infrastructure. It introduces an integrated methodology to prioritize security

requirements with the goal of ensuring that the most important tasks are addressed first,

instead of proceeding in an ad hoc manner such as “easiest first” or “least expensive

first.”

Other work has been done regarding the use of game theory in CPS protection

planning. [11] emphasizes the need for estimation algorithms that capture realistic attack

models, and suggests that game theoretic techniques for modeling rational adversaries

may be useful for this task. [12] uses game theory to model the probabilities of

successful attacks as a function of the number of components that are attacked and

defended. [13] attempts to find the Nash Equilibria for a game theoretic formulation of a

CPS security scenario, and it distinguishes between the degradability and the

survivability of CPSs after attacks. [14] finds an optimum solution to a CPS security

game by utilizing linear programming. [15] incorporates human decision making into a

model of defending SCADA control systems by including one level of level-k reasoning.

9

Although not in the context of CPSs, [16] cites successful, real-world

implementations of security systems that rely on computer-generated solutions to security

games. Its algorithms are currently being used by the Los Angeles International Airport

and the U.S. Coast Guard, among others, to derive inspection schedules.

2.3 Approach

When trying to defend a large-scale distributed CPS, protection planners are faced

with the dilemma of allocating limited protection resources (e.g., man hours and money)

as efficiently as possible over multiple vulnerable sites. If the sites are not all equally

valuable, it does not make sense to allocate the resources evenly over the sites (the equal

allocation strategy). A much better strategy would be to allocate the resources

proportionately according to the relative values of the sites (the proportional allocation

strategy). However, these two approaches, like any plain optimization formulation, fail

to capture the effects of the attacker behavior in the model [17]. Consequently, these two

natural approaches to the scarce resource allocation problem are inadequate.

The approach taken in this chapter to large-scale CPS protection planning is to try

and anticipate how an adversary would allocate his attack resources and then to deploy

defensive resources accordingly. To accomplish this, the concept of level-k reasoning

from behavioral game theory is leveraged.

2.3.1 Level-k Reasoning

When engaging in a strategic contest, the first step a person typically employs in

formulating a strategy is to make an educated guess as to what his opponent will do.

From that point, he can arrange his strategy to beat his opponent’s putative strategy. Of

course, he may realize his opponent is also rational and is likely following a similar

10

procedure. This might lead him to try and beat the strategy that he imagines his opponent

is going to use to try and beat his initial strategy. This type of back-and-forth reasoning

could theoretically continue indefinitely. Behavioral game theorists, who have

extensively studied the dynamics of human beings engaged in strategic interactions, have

termed this thought process level-k reasoning [18].

In the concept of level-k reasoning, the natural, instinctual strategy is denoted as

the level-0 (L0) strategy, the first logical extension of it as the L1 strategy, then L2, and

so on. To summarize, the Lk type assumes his opponent is an L(k-1) type.

Over decades and in many contexts, behavioral game theorists have empirically

studied how many levels deep people typically descend into the level-k reasoning

process. One noteworthy attempt to isolate the level-k reasoning process from possible

confounding variables is the 11-20 money request game [19]. In this game, two

participants, independently of one another, are asked to choose an amount of money

between $11 and $20, and they are told they will be given whatever amount of money

they choose. Additionally, they are told that they will earn a $20 bonus if they choose

exactly $1 less than the other participant.

The L0 strategy in this game is to ask for $20—it is the instinctual starting point

since it is the highest amount of money available. From there, the L1 strategy is to ask

for $19 in anticipation of the other participant asking for $20, because this will result in

the $20 bonus. The L2 strategy is to ask for $18, and the L3 strategy is to ask for $17.

Around 80% of the subjects in a study conducted with 108 participants chose between

$17 and $20, and the authors demonstrate that these choices represent between three and

zero levels of level-k reasoning, respectively.

11

This leaves the other 20% of participants who chose between $11 and $16. Did

they employ more in-depth reasoning than the other 80% of participants? Based on ex

post interviews with the subjects, the answer to this question is a definitive, “No.” Indeed,

behavioral game theory researchers have repeatedly demonstrated that humans rarely (if

ever) continue to four or more levels of reasoning, either because they do not believe

their opponents will continue that far, or because they stop when they reach the limit of

their mental capacity [19]. People who do not employ level-k reasoning typically

describe their strategies as being based on “gut instincts,” guesses, or intuition. These

strategies require very little time to formulate relative to level-k reasoning strategies and

typically perform poorly in strategic contests.

Numerous level-k reasoning studies have been conducted on vastly different pools

of people and the results are similar to those of the 11-20 money request game.

Researchers have concluded that the majority of people, no matter what their country of

origin, level of intelligence, profession, ethnicity, gender, etc., employ between zero to

three levels of reasoning [18]. The approach taken in this chapter is to leverage this basic

trait of human nature to derive efficient protection resource allocations. However, before

level-k reasoning can be applied to the scarce resource allocation problem, a formal

model of the problem is needed, which the CB game from game theory provides.

2.3.2 The Colonel Blotto Game

Gross and Wagner devised the CB game to capture the strategic dynamics

inherent in allocating scarce resources over multiple sites [20]. In the canonical CB

game, two colonels, A and B, compete over K independent battlefields of total aggregate

value U. The colonels control M and N soldiers, respectively, and they must distribute

12

them over the K battlefields independently of one another (in the cover of darkness as the

eponymous construction goes). Their choices are revealed simultaneously (continuing

the illustration, at dawn), and whichever colonel has allocated the most soldiers to a

particular battlefield wins that battlefield. Each colonel’s goal is to maximize his own

utility.

There are many variations of the basic CB game. The colonels may have the

same amount of soldiers or different amounts. The values of the battlefields may be

homogenous or heterogeneous. The colonels may agree or disagree on the values of the

battlefields. There are also different ways to resolve ties, including denoting a default

winner in all cases, splitting the utility between the colonels, or not awarding the utility to

either colonel.

Arad and Rubinstein have demonstrated that when people play the CB game, they

exhibit level-k reasoning [21]. Therefore, this strategic model provides a sound basis for

applying level-k reasoning to CPS protection planning.

CPS protection planning is modeled as a specific type of CB game where the

defender and the attacker are the two colonels, protection and attack resources are the

soldiers, and CPS critical sites are the battlefields. In order to capture the nuanced

dynamics of CPS protection planning, the following game variations were selected:

 Both the defender and the attacker are assigned the same number of soldiers,

making them equally matched. This makes sense because both the defender and

the attacker would naturally allocate resources in proportion to the size and value

of the CPS infrastructure.

13

 Both the defender and the attacker are assigned 100 soldiers. This choice allows

for the easy identification of the proportion of resources allocated to each site

(i.e., each soldier is 1% of a colonel‘s budget).

 The battlefields’ values are heterogeneous. Based on their location in the

infrastructure and their differing responsibilities, the critical sites of any large-

scale distributed CPS will have different amounts of utility.

 It is assumed that the attacker and the defender will value the battlefields

symmetrically. Because the model is predicated on a well-planned attack, the

attacker, having conducted substantial reconnaissance, will have accurate values

for the sites.

 In the case of a tie, the battlefield utility is split evenly.

In addition to these variations one tweak must be made to the canonical CB game

to transform it into a security game. In protection planning, unlike in the war version of

the game, the critical sites are not neutral ground—they are all owned by the defender by

default. In the classic CB game, in the scenario where neither the defender nor the

attacker allocate resources to a particular battlefield, the battlefield’s value goes un-

awarded. However, in the same situation in a security context, the defender would win

that site because he owns all of the sites to begin with. Therefore, in what this chapter

terms the security CB game, un-attacked battlefields are automatically awarded to the

defending colonel, even if those sites are not protected.

14

2.3.3 Calculating Level-k Strategies

An ILP was devised to model the security CB game. Based on the ILP, a

mathematical programming solver (e.g., CPLEX) is able to efficiently calculate the best

responses to any set of opponent strategies. By bootstrapping the model with the L0

strategy, the ILP can calculate strategies at any depth of level-k reasoning by first

computing the best response to the L0 strategy (i.e., the L1 strategy), and then the best

response to that strategy, and so on, until the desired level is reached.

The L0 strategy in the CB game is the proportional allocation strategy, as

demonstrated by Arad and Rubinstein [21]. The proportional allocation strategy for a

colonel with N total soldiers, and a game with set K of battlefields and U total utility is

calculated as follows:

 𝑛𝑗 = 𝑢𝑗 𝑈⁄ × 𝑁, ∀ 𝑗 ∈ 𝐾 (1)

Even though this approach allows one to calculate any level of level-k reasoning

strategy, which level should CPS protection planners select? The answer is that it

depends on what level the attackers select. Based on the findings from behavioral game

theory described earlier, it can be assumed that they will use between zero and three

levels of level-k reasoning.

This might make it appear like the L4 strategy would be the best choice, but the

evidence from the experiment conducted with human subjects (detailed below) strongly

supports the choice of L3 as the correct defensive strategy for the security CB game.

This makes sense because as strategies become more distant from lower-level strategies,

they over-protect some sites at the expense of others (i.e., they “overthink” the problem).

Therefore, the best place to compete is as near as possible to the majority of the

15

anticipated attacks. The choice of L3 as the best strategy is also consistent with the

results of behavioral game theory competitions [22].

The ILP is as follows:

Let P be the set of possible attack strategies and K be the set of battlefields

Let 𝑎𝑝𝑗 be the number of soldiers placed at battlefield j in attack strategy p, for 1

≤ j ≤ |K |, 1 ≤ p ≤ |P |.

Let 𝑧𝑗𝑛 be a decision variable where

𝑧𝑗𝑛 = {
1, defender places exactly n soldiers at battlefield 𝑗

0, otherwise

for 1 ≤ j ≤ |K |, 0 ≤ n ≤ 100.

Let 𝜀𝑝𝑗𝑛 be an indicator variable that is calculated off-line for each 1 ≤ p ≤ |P |, 1

≤ j ≤ |K |, 0 ≤ n ≤ 100.

For 𝑛 ≠ 0, 𝜀𝑝𝑗𝑛 = {

1, 𝑛 > 𝑎𝑝𝑗

0, 𝑛 = 𝑎𝑝𝑗

−1, 𝑛 < 𝑎𝑝𝑗

, so a tie results in 0 points.

For n = 0, 𝜀𝑝𝑗0 = {
1, 0 = 𝑎𝑝𝑗

−1, 0 < 𝑎𝑝𝑗
, so a 0-0 score results in a win for the defender.

Let 𝑢𝑗 represent the utility of battlefield j for 1 ≤ j ≤ |K |. A model to find an

optimal strategy for the defender becomes:

maximize ∑ ∑ ∑ 𝑢𝑗𝜀𝑝𝑗𝑛𝑧𝑗𝑛
100
𝑛=0

|𝐾|
𝑗=1

|𝑃|
𝑝=1 (2)

subject to ∑ ∑ 𝑛 ∙ 𝑧𝑗𝑛 = 100100
𝑛=0

|𝐾|
𝑗=1

 ∑ 𝑧𝑗𝑛
100
𝑛=0 = 1 ∀𝑗

 𝑧𝑗𝑛 ∈ {0, 1} ∀𝑗, 𝑛

16

The objective function is the number of wins, minus the number of losses, where

ties count as 0 for n ≠ 0. The first constraint enforces the rule that the attacker and

defender each have only 100 soldiers. The second constraint ensures that the defense

cannot place two different amounts of soldiers at one battlefield.

2.4 Illustration

In order to illustrate how this approach would allocate scarce protection resources

in a real security setting, in this section a specific large-scale distributed CPS is detailed

along with a realistic, although hypothetical, attack scenario.

2.4.1 Attacking the Smart Grid

Lloyds imagines a realistic power grid attack scenario conducted by a highly

motivated and capable adversary [23]. The report describes a meticulously planned cyber

attack involving considerable reconnaissance and effort that hinges on planting malware

in smart grid safety control systems. In the scenario proposed, the malware lies dormant

until activated during a peak period of electricity demand, at which point it attacks grid

components in a coordinated manner and eventually triggers a cascading blackout. A

cascading blackout is an “avalanche” of power outages that spreads rapidly and

uncontrollably over a vast region. To prevent cascading outages from occurring, load

shedding, the practice of taking “blocks of customers off-line in order to prevent a total

collapse of the electric system,” is typically performed [24].

The attack scenario in this chapter is based on Lloyds’, and is oriented around the

SPS described in [25], which is representative of a general, large-scale CPS. As the

power grid evolves into the smart grid, SPSs will be increasingly relied upon to help

maintain grid stability. SPSs are CPSs made up of communicating nodes located at key

17

points in the grid which automatically detect and correct power imbalances in a

coordinated manner.

The SPS outlined by [25] is distributed over 30 power distribution substations.

The goal of an adversary in the hypothetical attack scenario is to infiltrate the nodes of

the SPS and cause them to ignore load shedding commands on demand. Ironically, it is

by keeping customers online that the adversary hopes to maximize damage. If the

adversary can cause a major source of power generation to go offline, perhaps through a

physical attack on a key generator, and then prevent mitigating load shedding from taking

place, he may be able to create enough of a power imbalance to trigger a cascading

blackout.

Because each node manages a different number of megawatts (MWs) (i.e., some

distribution substations may be located in urban areas and others in rural areas), they are

not all equally attractive to the adversary. His goal is not to obtain control over as many

of the 30 nodes as possible, but to gain control over as many MWs as possible. It is

Figure 1. The distribution of 13,030 MWs over the 30 distribution

substations in [25]

20

1700

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
W

s

Distribution Substations

18

assumed that the adversary, having done considerable reconnaissance, knows the average

number of MWs flowing through each distribution substation.

It is also assumed that the adversary does not know how protection resources have

been allocated to the nodes. His goal is to allocate more attack resources to particular

nodes than the defender has allocated to protecting them. As demonstrated earlier in this

chapter, based on findings from behavioral game theory, it is highly likely that the

attacker will start with the proportional allocation strategy and then employ between zero

and three levels of level-k reasoning to allocate his attack resources. This assumption is

put to the test in the competition detailed below.

With the infrastructure detailed, the two parameters needed by the mathematical

programming solver to calculate level-k resource allocations from the ILP have been

identified: the number of critical sites (30, based on the 30 distribution substations) and

their values (the average number of MWs they control, which are rounded to the nearest

10). This data was compiled from the model power grid in [25] and is shown graphically

in Figure 1. The entire power system is comprised of 13,030 MWs, spread out over 30

substations, ranging from 20 to 1,700 MWs each.

Table 1. The L0-L5 Allocations of 100 Defensive Units Across the 30 Sites

ID 1-7 8-15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L0 0 1 1 1 2 2 3 4 5 7 8 8 8 8 10 12 13

L1 0 0 0 0 0 3 4 5 6 8 9 9 9 9 11 13 14

L2 0 0 0 0 0 4 0 6 0 9 10 10 10 10 12 14 15

L3 0 0 0 0 2 0 0 0 0 10 11 11 11 11 13 15 16

L4 0 0 0 0 1 0 2 0 2 0 12 12 12 12 14 16 17

L5 0 0 1 2 0 2 2 2 2 0 0 13 13 13 15 17 18

19

Table 1 shows the CPLEX calculated allocations for each of the L0 through L5

strategies. It illustrates that as level-k reasoning increases, the trend is to devote more

resources to the largest sites at the expense of the lesser sites.

2.5 Validation

To test this approach, an experiment was conducted with human subjects, which

is uniquely capable of validating the computer-generated strategy’s performance against

intelligent human beings.

2.5.1 Experimental Details

Volunteers were solicited from among the engineering and computer science

majors at a private Midwestern university. 92 human subjects participated. They

competed for gift cards and were given a week to compile their submissions, which

incentivized thoughtful participation. The participants were analytically minded, with an

Figure 2. The aggregate human attack strategies (n=92)

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
tt

ac
k
 U

n
it

s

Distribution Substations

Median Attack Allocation

L3 Defense Allocation

20

average ACT Math score of 29.83, which exceeds the 93rd percentile. It is believed they

are a fair representative sample of intelligent and motivated people in general.

The participants were provided with a prompt based on the SPS defined earlier,

outlining the 30 critical sites and their values. There were asked to compete in two

different competitions, one as defenders of the infrastructure and one as attackers. (The

competitions were subtly different due to the nuance in the security CB game where the

defenders own all of the sites by default.) They were tasked with allocating 100

indivisible units of resources across the 30 sites with the goal of winning as much utility

as possible. They were clearly informed of all of the specific dynamics of the game,

including the equally matched opponent, the rule of the defender winning un-attacked

sites by default, and the splitting of utility in case of a tie.

The attack competition served as the basis to measure the defense submissions

against. The defense submissions were scored by matching each of them against all of

the attack submission in head-to-head contests. The total amount of utility won over all

of the head-to-head contests served as the ranking criteria.

The aggregated attack strategies the subjects submitted are shown in Figure 2.

The median attack allocations approximately align with the proportional allocation

strategy (compare with Figure 1). The vertical bars denote the middle 50% of attack

allocations. The L3 defense allocations, marked with X’s, defeat approximately 75% of

the attack strategies in all nine sites where resources were allocated, which includes the

eight most valuable sites. This is a remarkably efficient allocation of defensive

resources.

21

2.5.2 Experimental Results

Figure 3 illustrates the results of the defense competition, including the scores of

all 92 human participants and the computer-generated L0 to L5 strategies. The L3

strategy performed remarkably well, finishing the best of any of the level-k strategies in

3rd place. The L3 strategy achieved 32% more aggregate utility than L0 (i.e., the

proportional allocation strategy) and only 2% less than the maximum possible utility.

The L0 strategy finished in a tie for 61st place (three of the 92 human competitors

also submitted the L0 strategy). This is an alarming result because it is the natural way

that limited protection resources would be allocated across a CPS infrastructure in

practice, because it is the most “commonsense” approach. However, it is not a strategic

approach. The reason it did poorly in the competition is presumably because many of the

attackers anticipated this “commonsense” defensive posture and allocated their attack

resources accordingly. This result provides support for the notion that the L0 strategy is

naïve.

Figure 3. The results of the defense competition (n=98)

MAX
L3

L4 L2 L5
L1

L0

MIN

100

200

300

400

500

600

700

800

1 10 20 30 40 50 60 70 80 90 98

A
g
g
re

g
at

e
U

ti
li

ty
 (

1
0

3
)

Place Finished

22

Also noteworthy is that the first three level-k strategies did progressively better,

peaking at L3, and then began to degrade with the L4 strategy. This is consistent with

behavioral game theory findings, and suggests that the L4 and L5 strategies are over-

optimized. Meanwhile the L3 strategy competed in the same space as most of the

competitors, and likely due to its mathematical precision, out-performed most of the other

L3 thinkers in the competition. The experimental results confirm that the L3 strategy

achieves the best balance across all sites, neither over- nor under-allocating resources.

To help gain insight into a more absolute measure of performance (as opposed to

the relative performance against this specific pool of human competitors), CPLEX was

used to solve for the optimal defensive strategy (designated MAX) in the competition.

MAX could only be determined after the competition because it requires perfect

knowledge of all of the attack strategies. (No participant, including the authors, was privy

to the specific attack strategies during the competition.) MAX represents the maximum

achievable amount of utility.

Table 2. Competition Result Details for Select Defense Strategies (n=98)

ID
Place in

Competition

Percentage of all Possible

Strategies Outperformed

L0 T61 82.2%

L1 26 97.3%

L2 12 99.2%

L3 3 99.7%

L4 7 99.5%

L5 17 99.0%

Human-Best 1 99.8%

Human-Worst 98 10.5%

MAX N/A 100.0%

MIN N/A 0.0%

23

The minimum achievable amount of utility (designated MIN) was also calculated

by entering a strategy with zero resources allocated to all of the sites. MIN achieved some

utility because it won sites where no attack resources were allocated.

In this competition, the total number of possible allocations of 100 units of

resources over 30 sites equals:

 (
100 + 30 – 1

30 – 1
) ≈ 6 × 1028 (3)

This is an enormous number of strategies, of which the competition submissions

represent only a minute subset. Assuming that if all possible defensive submissions were

to be entered into the competition, they would be roughly normally distributed between

MIN and MAX, and by setting MIN and MAX each three standard deviations on either

side of the mean, it is possible to use the cumulative distribution function for the standard

normal distribution to calculate an absolute percentage score for every strategy in the

competition. These values are summarize in Table 2. The level-k strategies peak at L3,

which finished 3rd place in the competition against 92 human competitors, and

outperformed approximately 99.7% of all possible strategies against this set of human

attackers.

The L3 strategy performed better than 99.7% of all possible defensive allocations

against this pool of attackers. For comparison purposes, L0 performed better than 82.2%,

and the last place human finisher in the competition performed better than only 10.5%.

On average, the defense strategies submitted into the competition outperformed 89% of

all possible defensive allocations, which is not surprising since they were created by

24

humans. They would naturally outperform the random (i.e., unintelligent) strategies that

make up the vast majority of all possible strategies.

2.6 Conclusion

In conclusion, this chapter argues that any promising approach to CPS protection

planning must take into account the strategic nature of powerful and highly motivated

adversaries. Failure to do so is naïve and unlikely to be effective. To accomplish this,

behavioral game theory is leveraged, which is a field that has extensively studied and

documented how human beings behave in strategic scenarios. To make concrete the

connection between CPS security and behavioral game theory, the security CB game was

created, which is a rigorous model of the scarce resource allocation problem inherent in

defending any large-scale CPS from attack.

Furthermore, by using CPLEX in conjunction with an ILP, the allocation

computations are automated. This is helpful because it provides a mathematically sound

basis for resolving the trade-offs and difficult decisions inherent in the scarce protective

resource allocation problem.

Most importantly, this chapter demonstrates that it is possible to do much better

than the obvious, straightforward approach of allocating scarce protection resources

proportionately across a CPS infrastructure. The proportional allocation strategy is

highly unlikely to effectively counteract an attacker’s resource allocations, as

demonstrated by the attack competition conducted with human subjects, because it is

naïve and not strategic. On the other hand, the computer-generated L3 strategy

performed very well in the competition, demonstrating the validity of the overall

approach.

25

The findings from this work are intended to be the beginning of CPS protection

planning, not the end. In other words, any serious attempt to protect a large-scale CPS

will involve the strategic allocation of scarce resources as a starting point. The security

CB game and the ILP provide protection planners with data to help them make the

difficult decisions inherent in this task. Because of its general nature, this approach is

applicable to a wide variety of CPSs situated in various contexts, but it does not provide

protection planners with the implementation details they ultimately need.

Future work could explore how the allocation of man hours and money can be

made concrete in a specific CPS infrastructure. For example, log auditing and network

monitoring are two tasks where man hours are invariably in limited supply. How,

therefore, should security personnel divide up these man hours amongst the many nodes

that make up a large-scale CPS? This research argues that as opposed to a proportional

allocation of man hours, they should choose the mathematically optimized L3 strategy.

As another example, [6] notes that security in CPSs must be accomplished in part by

making the nodes resilient because they are inherently vulnerable. But resilience is

inherently a matter of degree. The security CB game and L3 reasoning can help

determine where “extra resilience” should be placed and exactly how much is necessary.

For example, if budget is available to purchase additional security measures (e.g.,

biometric authentication, surveillance cameras, anti-tamper hardware, etc.) for

geographically disparate sites in a CPS, this methodology can shed light on how one

should choose which sites to upgrade and by how much.

26

III. Teaching Adversarial Thinking for Cybersecurity*

3.1 Introduction

It is widely acknowledged that teaching adversarial thinking to cybersecurity

students is important. In a recent editorial highlighting the state of cybersecurity

education in colleges and universities, Fred Schneider writes, “Can adversarial thinking

for cybersecurity even be taught, or is it an innate skill that only some can develop? The

answer, which is neither known nor aggressively being sought by those who study

cybersecurity education, seems central to the development [emphasis added] of an

effective cybersecurity course” [26].

A team of subject matter experts convened by the Association of Computing

Machinery (ACM) to identify cybersecurity curricular guidelines agrees that teaching

adversarial thinking is vital. Their summary report states, “To protect systems…we need

to temporarily adopt the thinking process of the malevolent hacker…Developing this way

of thinking must be part of [emphasis added]…educating cybersecurity professionals”

[27].

While there is a consensus that adversarial thinking should be taught in higher

education settings, current cybersecurity curricular guidelines, both from academia and

industry, omit this aspect of cybersecurity education. The recent “CS Curricula 2013”

[28], which made headlines for its new emphasis on cybersecurity, does not explicitly

mention the term adversarial thinking, nor does the National Security Agency (NSA) in

their National Centers of Academic Excellence (CAE) curricular guidelines [29]. What

* This chapter is based on research that will be published in an upcoming conference proceedings:

S. Hamman, K. Hopkinson, “Teaching adversarial thinking for cybersecurity,” in Proceedings of the 20th colloquium for
information systems security education, Philadelphia, 2016.

27

explains this disconnect between the acknowledged importance of teaching adversarial

thinking, and the apparent lack of curriculum support for doing so? The hypothesis of

this chapter is that part of the problem is caused by a lack of clarity regarding what it

really means to “think like a hacker.” A necessary step towards addressing adversarial

thinking effectively in the classroom is identifying appropriate student learning

outcomes, but this cannot be accomplished without first having a clear understanding of

what adversarial thinking really means.

This chapter sets out to define the term adversarial thinking by viewing it through

the lens of cognitive psychology. As a discipline that studies the human brain, cognitive

psychology provides a good foundation for helping to “get inside the minds” of hackers.

Specifically, this chapter homes in on Sternberg’s Triarchic theory of intelligence as an

anchor for understanding how hackers think. Then, with new insights gained from this

exploration, a novel, multidimensional definition of adversarial thinking is proposed that

leads immediately to three clearly defined learning outcomes and to some new ideas for

teaching adversarial thinking to cybersecurity students.

3.2 Background

3.2.1 Hacker Definition

Given the starting point that adversarial thinking means “thinking like a hacker,”

the first question that should be addressed in any attempt to define adversarial thinking is,

“What kind of a hacker?” For example, the following hacker activities differ

substantially: email spear phishing, writing worms and viruses, circumventing digital

rights management (DRM) protection, coding a buffer overflow attack, and password

cracking. Additionally, there are various different broad categories of hackers, ranging

28

from script kiddies to highly trained professionals, and from insider threats to hacktivists.

For the purposes of this chapter, because the emphasis is on exploring adversarial

thinking in the context of cybersecurity practice, all references to hackers refer to the

individuals whom cybersecurity personnel are hired to prevent from breaking into their

networks and computer systems.

3.2.2 Definitions of Adversarial Thinking

To date, there is no commonly accepted definition of adversarial thinking. When

the term is used, in many cases it is not defined at all, taking it for granted that adversarial

thinking merely means “thinking like your cyber adversary (i.e., a hacker).” However,

this raises the obvious question: what is different or unique about the way hackers think?

Two notable attempts to unpack the idea further have been made in recent

editorials promoting the teaching of adversarial thinking in cybersecurity education.

Melissa Dark, Education Editor for IEEE Security & Privacy, proposes the following

definition of adversarial thinking: “Let’s say that adversarial thinking is the ability to

look at system rules and think about how to exploit and subvert them as well as to

identify ways to alter the material, cyber, social, and physical operational space” [30].

Another definition comes from Schneider, who writes that adversarial thinking is “the

very essence of game theory. In it, actions by each player are completely specified; for

cybersecurity and safety-critical systems, identifying possible player actions is part of the

central challenge” [26].

On the surface these two definitions are very different, but what they have in

common is the identification of some of the salient objects of a hacker’s attention. For

Dark, these are “system rules” and “operational spaces,” and for Schneider it is “player

29

actions.” Hackers undoubtedly bring a unique perspective to system rules, they strive to

alter operational spaces to their advantage, and they carefully consider possible player

actions. Combining these two definitions in a concise way might lead to the following

definition: adversarial thinking is the ability to approach system rules, operational

spaces, and player actions from a hacker’s perspective.

This is certainly more helpful than the simplistic “thinking like a hacker”

definition. However, this chapter takes the exploration a step further in that it orients the

term not around the objects of a hacker’s focus, but around the primary structures of his

intellect. In other words, the goal of this chapter is to provide a more fundamental

definition of adversarial thinking that could then, if desired, be applied to various

different objects of a hacker’s attention, including system rules, operational spaces, and

player actions.

3.2.3 Cognitive Psychology

According to the American Psychological Association, cognitive psychology is

the study of “higher mental processes such as attention, language use, memory,

perception, problem solving, and thinking” [31]. Because of its focus on the human

mind, and in particular on the structures of thought, cognitive psychology is a natural

place to turn to for guidance in exploring the minds of hackers.

Well-known psychology professor Robert Sternberg proposes a cognitive model

called the Triarchic theory that breaks the intellect down into three component parts: the

analytical, the creative, and the practical [32]. While there are many competing cognitive

models, Sternberg’s is appreciated for its simplicity and strong explanatory power. Long

30

before Sternberg, Aristotle developed a roughly parallel three-pronged model of the

intellect, which may have provided some of the inspiration for Sternberg [33].

Sternberg’s analytical area captures the popular conception of intelligence, and

coincides with the notion of IQ. It includes mathematical ability and logical reasoning.

The creative area of the intellect includes the ability to make unique connections and to

see the world in original ways. Artists, authors, and musicians excel in this aspect of the

intellect. And lastly, practical intelligence includes the ability to plan, strategize, and

accomplish goals. CEOs and military leaders typically have high degrees of practical

intelligence (see Table 3).

The three areas of the Triarchic theory are meant to capture different modes of

intelligence that all human beings possess to a greater or lesser extent. The three areas

are not necessarily correlated with one another—a person might be above or below

average in any given area independent of the other areas. The model is useful to help

explain why some people succeed in some arenas and fail in others. Sternberg notes that

some students with high analytical intelligence do very well in the highly structured

world of undergraduate education, but they struggle as graduate students because they

lack creative and practical intelligence, both of which are paramount for conducting and

completing original research [32].

Table 3. Summary of Sternberg’s Triarchic Theory of Intelligence

Area Description Popular Conception Exemplar

Analytical
Mathematical ability and logical

reasoning
IQ Einstein

Creative
The ability to make unique connections

and see the world in original ways
Creativity Van Gogh

Practical
The ability to plan, strategize, and

accomplish goals
Street smarts Napoleon

31

3.3 The Triarchic Theory Applied to Hackers

Applying Sternberg’s framework to the minds of hackers provides some valuable

insights and a more thorough understanding of what makes their way of thinking unique.

This section of the chapter views hacker behavior through each of the three lenses

provided by the Triarchic theory, with an emphasis on explaining how each category of

the intellect contributes to success in hacking.

3.3.1 Analytical

In the popular culture hackers are typically portrayed as highly intelligent

“computer wizards.” Hackers in television shows and movies sometimes seem like aliens

to those around them because of their uncanny technical abilities. Typically, these

characters are irresistibly drawn to computing from their youth. While these portrayals

are fictitious, there is support for this popular hacker stereotype; hackers do seem to have

an unusual affinity and knack for technology.

Hacking involves detailed knowledge of many highly technical aspects of

computing, including computer networking protocols, assembly language programming,

and operating systems. In Sternberg’s paradigm, this technical knack exhibited by

computer hackers ties into the analytical component of their intellect. In this case, their

analytical gifts translate into a remarkable facility with computers and technology.

Having strong technical abilities is vital to hackers because many kinds of cyber attacks

involve overcoming significant technological hurdles. Here are a few examples: to

infiltrate a computer network, a hacker may need to construct precisely malformed

network packets; to exploit a programming flaw, a hacker may have to tediously code a

32

buffer overflow attack; and to remain undetected on a system, a hacker might need to

modify an operating system’s libraries.

One real-life example of a hacker who leveraged his analytical intelligence is

Robert Tappan Morris. At the age of 19, Morris published a technical paper on a major

vulnerability in a trust protocol used in the BSD Unix operating system [34]. A few

years later, freshly graduated from Harvard, he used his advanced understanding of

computer networking protocols and operating systems to write a software worm that

infiltrated an alarming percentage of the computer systems on the Internet at that time

[35]. Another example of a hacker who excelled in this area is Elias Levy (a.k.a. Aleph

One) who wrote the seminal paper on buffer overflow attacks [36]. Both of these

individuals used their analytical gifts to dissect software and network and security

protocols, and this enabled them to identify exploits.

In summary, to think like a hacker in terms of the analytical component of his

intellect is to embody his technological capabilities, which includes low-level

programming skills and a deep familiarity with operating systems and computer

networking protocols.

3.3.2 Creative

Sternberg cites “lack of conventionality” as one of the markers for creative

intelligence [32]. This is similar to the way cybersecurity guru Bruce Schneier describes

what he calls the “hacker mindset.” Schneier writes that a hacker is a person who

“discards conventional wisdom,” and who by “thinking differently,” is able to uncover

security vulnerabilities that had not occurred to the system’s designers [37]. This aspect

33

of adversarial thinking may be what Dark is referring to in her definition (quoted above)

when she mentions the ability to subvert system rules.

Creativity is at the core of the “hacker mindset.” While fiction writers excel at

creating original stories that capture the imagination, hackers excel at creating original

exploits that bend technology in unexpected ways. Both are manifestations of the same

root—they involve seeing the world in a unique way, and the ability “to put old

information together in a new way,” as Sternberg puts it [32]. While most technologists

are concerned with making systems work, hackers are obsessed with pushing the limits of

systems and exploring possibilities that many people would never consider. This aspect

of hacking is the main connection between the pejorative way the term hacker is used

today, and the original, complimentary term from a previous era which connoted being a

highly skilled programmer.

IP fragmentation attacks provide a good illustration of the way hackers apply their

creativity to bend technology and protocols. This class of attacks is where IPv4 packets

are intentionally fragmented by hackers for purposes ranging from crashing computers to

circumventing firewalls [38]. All computer network students learn that routers are

programmed to automatically fragment IPv4 packets that are too large to traverse the next

hop link, but the creative and unconventional mind of a hacker realizes that packets could

also be fragmented by programmers, intentionally, and in unusual ways. This opens up a

world of possible attacks, many of which have exposed unsafe security assumptions

made by system designers.

34

In summary, the creative aspect of adversarial thinking involves embodying the

unconventional perspectives of hackers which enable them to manipulate technology in

unexpected ways.

3.3.3 Practical

The practical component of Sternberg’s Triarchic theory is the aspect of the

intellect that involves planning, strategizing, and overcoming obstacles to accomplish

goals. While script kiddies are known to indiscriminately fire point-and-click exploits at

random in hopes of finding unpatched systems, more highly skilled hackers select targets,

conduct reconnaissance, carefully plan their attacks, and meticulously cover their tracks

[39]. In general, hackers attempt to use their time and resources wisely, and they strive to

outwit security personnel. A researcher who conducted extensive interviews with

hackers recorded, “One [hacker] described how he attempted to anticipate the moves of

his adversary [i.e., security personnel] by stating, ‘how can I predict, how can I

anticipate what they’re going to do?’” [40]. The researcher concludes that strategizing is

an essential aspect of hacking. Schneider, in his definition of adversarial thinking

(quoted above), probably has the practical component in mind when he compares

adversarial thinking to game theory—the study of strategic reasoning.

A good example of a real-life hacker who excels in the area of practical

intelligence is the famous social engineering expert Kevin Mitnick. While Mitnick is

undoubtedly very intelligent, his intellectual gifts can be better described as street smarts

than book smarts. Mitnick had a knack for thinking on his feet, and he was rarely denied

the prizes he sought. During his hacking days, he routinely employed strategic

maneuvering to evade detection and capture. For example, during his years on the lam

35

from the FBI, he routinely hacked into his pursuers’ phone lines, voicemails, and email

accounts, which enabled him to stay one step ahead of them for years [41]. Interestingly,

it was not until the FBI enlisted the help of another hacker, Tsutomu Shimomura, that

they finally caught him. Because practical intelligence is associated with success in

business, it is no coincidence that Mitnick was able to parlay his hacking infamy into the

lucrative career as a cybersecurity consultant that he enjoys today.

In summary, adversarial thinking positioned in the light of the practical

component of the intellect is embodying a hacker’s ability to think strategically. It is

captured in the ways hackers plan their attacks, outmaneuver security personnel, and

overcome obstacles.

3.3.4 Summary

Having outlined all three areas of the hacker’s intellect separately, it may be

helpful to take a real-world example of a cyber attack and see how each of the three

aspects contributed to the hacker’s success. Clifford Stoll published the first detailed

account of a computer hacker in the research literature in 1988 [42]. (He later turned the

paper into a bestselling book [43].) Although today’s cybercrime is worlds apart from

the hacking of the 1980’s in terms of motivation, scale, and organization, the fundamental

techniques of hacking have not changed.

Stoll describes how his hacker was deeply familiar with the Unix operating

system and computer networks in general (on the level of a professional systems and

network administrator), and was adept at cracking passwords, writing scripts, and

modifying operating system utilities to act as Trojan horses. These strengths can be

attributed to the analytical component of the hacker’s intellect. Stoll also describes how

36

the hacker was able to escalate his privileges on systems from a regular user to root level

with Gnu-Emacs, a popular text editor with a built-in mail feature which enabled users to

communicate with one another by moving files into each other’s home directories. The

hacker had the key insight that it was also possible to use the mail utility to move files

(like a simple shell script programmed to change user permissions when executed by

Cron) into the systems directory. This possibility likely never occurred to the Gnu-

Emacs developers because there was no legitimate reason to send “mail” to the systems

folder. This insight can be attributed to the creative component of the hacker’s intellect.

And lastly, the paper describes how the hacker installed backdoors so that he could gain

access to systems even after they had been patched, how he modified logs and audit trails

to avoid detection, and how he employed many shrewd tactics for identifying new login

credentials, including searching in emails and files, installing Trojan horses to capture

login attempts, and password cracking and guessing. These strategies can be attributed to

the practical component of the hacker’s intellect.

This short example illustrates that in the case of a skilled hacker, all aspects of his

intellect may contribute to his success. While not all areas are strictly necessary, a hacker

without analytical intelligence (i.e., technical expertise) is a nonstarter, one lacking

Table 4. The Triarchic Theory Applied to Adversarial Thinking for Cybersecurity

Area Adversarial Thinking Application Example Attack Summary

Analytical

Understanding technology at a deep level,

including computer networking protocols,

programming languages, and operating systems

Buffer Overflow
Technological

capabilities

Creative

Identifying unsafe security assumptions through

manipulating and stretching technology in

unexpected ways

IP Fragmentation
Unconventional

perspectives

Practical
Reasoning strategically to plan and execute

attacks, evade detection, and overcome obstacles
Trojan Horse Strategic reasoning

37

creative intelligence never discovers novel vulnerabilities and is fully dependent on

recycled and likely widely known exploits, and one without practical intelligence has

little chance of successfully evading detection or of overcoming obstacles.

3.3.5 Adversarial Thinking Definition

A concise summary of the above exploration leads to the following

multidimensional definition of adversarial thinking: adversarial thinking is the ability to

embody the technological capabilities, the unconventional perspectives, and the strategic

reasoning of hackers (see Table 4). The word embody used in the definition is intended

to capture the sense in which actors embody the characters they play. It connotes

“becoming one” with hackers and seeing the world through their eyes. To the extent that

cybersecurity students can acquire this ability, in their future careers they will be able to

identify the digital fingerprints of hackers in their systems and compete with them on a

level playing field (the analytical component), identify and fix security vulnerabilities

before hackers have the opportunity to exploit them (the creative component), and

anticipate future attacks, thwart attacks in progress, and help track down hackers (the

practical component).

3.4 Adversarial Thinking for Cybersecurity Education

As explained in the introduction of this chapter, the reason for developing a more

precise definition of adversarial thinking is to help identify appropriate learning outcomes

around which curricula can be built. This section of the chapter briefly examines current

educational practices in terms of each of the three dimensions outlined in the definition.

For each area, three aspects in particular are addressed:

38

1. Awareness – how aware is the educational community of the importance of this

area?

2. Progress – how well is the educational community currently addressing this area?

3. Potential – how much potential is there for developing students’ skills and

abilities in this area?

3.4.2 Technological Capabilities

Although it is typically not associated with adversarial thinking, in order to think

like a hacker, cybersecurity students must understand a hacker’s technological

capabilities. This cybersecurity learning objective has been understood for a long time,

and teaching students technology and the tricks of the trade is the primary emphasis of

cybersecurity education today. For example, the NSA’s CAE in Cyber Operations

curriculum stresses low level programming, software reverse engineering, operating

systems theory, computer networking, and many other highly technical topics [29].

Not only is this area of cybersecurity well established, it is also particularly

effective at accomplishing its ends due to the fact that most computer science students

(i.e., the typical cybersecurity student) enjoy a knack for technology that is on par with

hackers.

3.4.3 Unconventional Perspectives

Because it is widely recognized as being important, helping cybersecurity

students develop the unconventional perspectives of hackers is the subject of much active

research. One recent innovative approach to achieving this involves encouraging

students to cheat on an otherwise impossible-to-pass exam. The authors explain, “For it

is only by learning the thought processes of our adversaries that we can hope to unleash

39

the creative thinking [emphasis added] needed to build the best secure systems” [44].

Another cybersecurity educator attempts to teach students this type of creative thinking

by assigning hacking labs. He writes, “We find students truly learn when challenged

with defeating a computer protocol” [45]. Others have written about how Capture the

Flag (CTF) exercises also may contribute to developing this type of creativity [46].

Unlike the technological capability area above, computer science students do not

necessarily have strong innate creative abilities. On the contrary, most technically

minded people are predominately “left brained,” meaning that they resonate with logic,

rigidity, and rules to the detriment of “outside-the-box” thinking. Therefore, teaching

this aspect of adversarial thinking may prove to be an uphill battle. It is not yet known

how effective approaches like the ones mentioned above are at developing cybersecurity

students’ abilities in this area.

3.4.4 Strategic Reasoning

Unlike the previous two areas, there is very little awareness of the need to teach

strategic reasoning to cybersecurity students. One hypothesis for this blind spot is that

because cybersecurity education was born out of a technical discipline (i.e., computer

science), it has tended to stay revolved around technology to the neglect of the human

element inherent in cybersecurity. However, without cyber adversaries, there is no

cybersecurity. In fact, at the heart of cybersecurity is an adversarial conflict. At least one

educational researcher has noted this weakness in cybersecurity education. He writes,

“These topics [i.e., the technical aspects of the curriculum] must be augmented with

large doses of ethics, legal studies, behavioral science, and military strategic studies”

[47].

40

As for potential, this area of adversarial thinking is particularly promising because

it is believed that, in general, a person’s ability to engage in strategic reasoning can be

improved. Colin Camerer, author of the seminal text on behavioral game theory, writes,

“Strategic thinking seems to be more like learning to windsurf, ski, or fly an airplane,

activities that require people to learn skills which are unnatural but teachable, and less

like weight-lifting or dunking a basketball, where performance is constrained by physical

limits” [18].

3.5 Recommendations

There are at least three helpful observations that emerge from this brief analysis

(see Table 5). First, any attempt to teach adversarial thinking to students with little

technical aptitude could prove futile, because in order to understand how hackers think, a

student must have some baseline level of innate technical ability. This argues for

cybersecurity to continue being taught as a sub-discipline of computer science.

Second, associating what Schneier calls the “hacker mindset” with the creative

component of the intellect could lead to novel approaches for teaching the

Table 5. Summary of Adversarial Thinking Instruction in Cybersecurity

Education

Dimension Learning Outcome Awareness Progress Potential

Technological

Capabilities

Understand computer networking

protocols, low-level programming

languages, and operating systems.

Unconventional

Perspectives

Identify unconventional uses of

software and protocols that could be

exploited as attack vectors by hackers.

Strategic

Reasoning

Anticipate the strategic actions of

hackers, including where, when, and

how they might attack, and their tactics

for evading detection.

Key: High Medium Low

41

“unconventional perspectives” of hackers. For example, it may be possible to adapt

practices used to stimulate creativity in other disciplines (e.g., creative writing) to

cybersecurity education.

Third, the strategic dimension of adversarial thinking is not being adequately

addressed in the classroom. This observation has already led to progress in cybersecurity

education. The next chapter details an educational experiment that was conducted where

basic game theory concepts were taught to cybersecurity students. The results show that

learning game theory had a statistically significant impact on the students’ abilities to

anticipate the strategic actions of others. This study demonstrates that with the proper

educational support, students can learn how to better compete in the “battle of wits” that

sometimes plays out in the practice cybersecurity.

3.6 Conclusion

In conclusion, by defining more precisely what it means to “think like a hacker,”

this chapter has shed new light on how adversarial thinking can be addressed in the

classroom. Perhaps most beneficial is the realization that strategic reasoning is an

important, yet overlooked, aspect of adversarial thinking.

Future work could build on this research by potentially expanding the definition

to include other aspects of a hacker’s mind, such as his motivations and unique

personality traits (see [48]). It would be interesting to study whether these types of

insights could also prove beneficial to the practice of cybersecurity.

42

IV. Teaching Game Theory to Improve Strategic Reasoning in Cybersecurity

Students*

4.1 Introduction

Cybersecurity expert Ed Skoudis, in his popular textbook on the art of computer

hacking, highlights the fact that hackers (i.e., cyber attackers) possess various different

levels of ability [39]. On one end of the spectrum are low-skilled script kiddies who

deploy point-and-click exploits and hope to compromise unpatched systems. On the

other end of the spectrum are highly skilled experts who select targets, conduct

reconnaissance, carefully plan their attacks, and meticulously cover their tracks. One

such expert hacker described how, when he was preparing to strike, he “attempted to

anticipate the moves of his adversary [i.e., security personnel] by stating, ‘how can I

predict, how can I anticipate what they’re going to do?’” [40].

Following best security practices is an adequate defense against script kiddies and

other low-skilled hackers, but not against hackers on the higher-skilled end of the

spectrum. Cybersecurity personnel must focus on more than just technology and best

security practices to stop these types of attackers; they must engage with cyber

adversaries on a higher, more strategic level. A good example of this strategic

cybersecurity mindset is contained in the first detailed account in the research literature

of a cyber attack, where Clifford Stoll describes how he was able to contain and

eventually help capture a sophisticated hacker by employing strategic reasoning [42].

* This chapter is based on an article that has been submitted to the IEEE Transactions on Education journal and is under review:

S. Hamman, K. Hopkinson, R. Markham, A. Chaplik, G. Metzler, “Teaching game theory to improve strategic reasoning in
cybersecurity students,” submitted for publication.

43

Cybersecurity educational curriculums tend to focus solely on technology and

security best practices (see [28] and [29]), and do not address the strategic components

inherent in the adversarial conflict of cybersecurity. One educational researcher points

out this shortcoming: “These topics [i.e., the technical aspects of the curriculum] must be

augmented with large doses of ethics, legal studies, behavioral science, and military

strategic studies” [47]. Fred Schneider, a prominent voice in cybersecurity education,

also notes that an important aspect of cybersecurity involves identifying the potential

strategic actions of attackers. He writes that this is “part of the central challenge” of

cybersecurity and teaching it “seems central to the development of an effective

cybersecurity course” [26]. The ability to anticipate the where, when, and how of a

potential attack, and to shore up defenses accordingly, is a valuable skill in cybersecurity.

As a means to teach strategic reasoning to cybersecurity students, this chapter

proposes augmenting traditional cybersecurity curriculums with basic game theory

content. To demonstrate the promise of such an approach, a pretest-posttest educational

experiment with a control group and an original measurement instrument was conducted.

Details of the treatment, which consisted of two hours of interactive lectures on both

traditional and behavioral game theory, are provided. The experiment demonstrates that

learning about game theory resulted in a statistically significant improvement in the

students’ abilities to anticipate the strategic choices made by others.

4.2 Background

4.2.1 Game Theory

Game theory is the study of interdependent decision making involving two or

more players where each strives to maximize his own utility [49]. Game theory was

44

established as a discipline in the 1940’s as a means to rigorously analyze the dynamics of

market competition. It was founded in the field of economics, but in the last few decades

it has become an important sub-discipline in many other fields, including political

science, law, biology, and international relations [50].

Behavioral game theory is an empirically based form of game theory that trades

analytical game theory’s presupposition of player perfect rationality for the

experimentally observed rationality of players in actual strategic contests (see Table 6).

One of traditional game theory’s most important contributions is the Nash

equilibrium, which is a stable condition in a game where no player can unilaterally

change his strategy to obtain more utility. One of behavioral game theory’s most

important contributions is the concept of level-k reasoning. Level-k reasoning makes

rigorous the notion of outwitting one’s opponent in a strategic contest. In level-k

reasoning, the level-0 (L0) strategy is the obvious, instinctual choice, the L1 strategy is

expecting your opponent to make the most obvious choice, the L2 strategy is expecting

your opponent to expect you to make the most obvious choice, etc. The levels proceed ad

infinitum in theory, but most people stop at between one and three levels of reasoning

[18].

Table 6. Analytical and Behavioral Game Theory Comparison

 Analytical Game Theory Behavioral Game Theory

Method Deductive Inductive

Approach Theoretical Empirical

History
Established in the 1940’s by

Morgenstern and Von Neumann

Coined by Camerer in the 2000’s; Built

on experimental game theory

Provides accurate

predictions for…
Many repeated-play games Many one-shot games

Paradigmatic game The Prisoner’s Dilemma Nagel’s Beauty Contest

Key contribution Nash Equilibrium Level-k Reasoning

45

Both traditional and behavioral game theory can be described as studies in

strategic reasoning.

4.2.2 Teaching Game Theory to Improve Strategic Reasoning

It is believed that a person’s ability to engage in strategic reasoning is a skill that

can be developed. Colin Camerer, author of the seminal text on behavioral game theory,

writes, “Strategic thinking seems to be more like learning to windsurf, ski, or fly an

airplane, activities that require people to learn skills which are unnatural but teachable,

and less like weight-lifting or dunking a basketball, where performance is constrained by

physical limits” [18].

Teaching basic game theory has been used as a means to help improve people’s

basic strategic thinking abilities. For example, the bestselling book Co-opetition teaches

basic game theory (no equations or graphs) in order to help business leaders make better

strategic decisions [51]. A military researcher affirms that the same kind of approach is

effective with military personnel. He writes, “Although one can quickly become bogged

down with the mathematics of game theory, a rudimentary understanding of its basic

principles can prove quite beneficial to military planners” [52]. Some MBA programs

also teach basic game theory to improve the strategic thinking abilities of the future

business executives in their programs (see [53] and [54] for two examples).

Because it is empirically based, learning about the concept of level-k reasoning

and how many levels deep people typically descend can prove especially beneficial for

improving a person’s strategic thinking abilities. Camerer comments anecdotally that

after only an hour of level-k reasoning training, research subjects off the street perform

better than undergraduate game theory students in strategic contests [18].

46

4.3 Study Methodology

4.3.1 Study Design

An experiment was designed to answer the following research question: does

learning basic game theory concepts improve a student’s ability to anticipate the strategic

choices made by other people? To answer this research question, a pretest-posttest

experiment with a control group was designed.

The research subjects were a representative sample of the students enrolled in

computer science major classes in a small, private, Midwestern university. The subjects

were male and female freshmen through seniors. The treatment group was comprised of

students enrolled in a non-elective, introductory cybersecurity course, whereas the control

Table 7. Game Theory Lecture Topics

Topic Description

Nagel’s Beauty Contest

game

In this game the players are asked to guess the number that will be 2/3 of the average number guessed by all of the

players [78]. Played the game in class with all of the students. The results were tabulated on the spot and then

discussed.

Strategic Reasoning
Explained the importance of strategic reasoning for cybersecurity, and how it is an important component of adversarial

thinking (see Chapter 3).

Game theory intro
Defined and discussed the history and traditional uses of game theory. Covered the concepts of players, moves, and

utility [49].

The Prisoner’s Dilemma

game and the Nash

equilibrium

This game describes a scenario where two suspects are being interrogated separately, and are faced with the dilemma

of betraying one another in exchange for a lesser prison sentence versus cooperating with one another and not talking.

Explained the methodology used to find the Nash equilibrium, then discussed how doping in sports (e.g., professional

cycling) is a real-life prisoner’s dilemma game [79].

Real-life game theoretical

analysis example

“Solomon’s Wise Ruling” (recorded in 1 Kings 3:16-28) is the story of two women who come to King Solomon, each

claiming to be the mother of the same baby. To identify the real mother, Solomon rules that the baby shall be cut in

two and split between them. Analyzed the scenario using game theory and showed that it predicts the outcome that

actually occurred given the women’s utility preferences [80].

Behavioral game theory Defined behavioral game theory and explained the important differences with analytical game theory (see Table 6).

Numb3rs clip
Showed a clip from the television show Numb3rs which discusses behavioral game theory and the Hide-and-Seek

game [81].

The Hide-and-Seek game

In this game the players are asked to guess in which of four boxes (three of which are identical) that other players have

hidden a treasure under. Played the game in class with all of the students. Explained focal point biases and the typical

results of the game [82].

The Princess Bride clip Showed the “Battle of Wits” scene from The Princess Bride film to introduce the concept of level-k reasoning [84].

Level-k reasoning

Discussed the concept of level-k reasoning, the definition of L0, and the typical proportions of level-k reasoning

observed in actual strategic contests by examining the 11-20 Money Request game [19]. Re-examined the in-class

Beauty Contest game results.

More game examples
Discussed the Traveler’s Dilemma game [83]. Also discussed level-k thinking in multiple dimensions with the

Colonel Blotto game [21].

47

group and attack subjects (explained below) were comprised of students enrolled in other

non-elective classes within the major.

None of the subjects had previously taken a course in cybersecurity or game

theory. All of the subjects participated voluntarily. The study was conducted under the

auspices of the university’s IRB.

4.3.2 The Treatment

The treatment consisted of two hours of interactive lectures on both traditional

and behavioral game theory (see Table 7 for a detailed description of the topics covered).

The lectures were augmented with slides, whiteboard diagrams, video clips, and

interactive whole-class exercises. The goal of the lectures was to teach basic game

theory, including behavioral game theory, with an emphasis on clearly communicating

foundational principles and big picture ideas. The primary theme of the instruction was

that game theory predicts outcomes by analyzing each player’s options in light of all of

the other players’ options. It was stressed that in this process assumptions must be made

about player rationality. Players may not be perfectly rational as analytical game theory

presupposes, but rational only to a (sometimes predictable) degree of level-k reasoning.

One hour of instruction occurred on Tuesday and one hour on Thursday of the

same week, both conducted by the same instructor. The control group received lectures

on an unrelated computer science topic by a different instructor.

4.3.3 Measurement Instrument

No suitable instrument was identified to measure a student’s ability to anticipate

the strategic choices made by others, so a cybersecurity themed instrument was designed

48

called Data Breach (see Appendix A). Data Breach is a novel, two-player, zero-sum,

cybersecurity themed game that combines aspects of the Hide-and-Seek and Colonel

Blotto games from game theory. The research subjects took the Data Breach exercise

twice, once for the pretest and once for the posttest.

The Data Breach exercise casts subjects in the role of a cybersecurity consultant

(the defender) whose job is to help catch an insider threat in an attempt to exfiltrate

customer data from a company database. Due to technology constraints that exist within

the company’s legacy computer systems, the data breach cannot be prevented, but it can

be detected after the fact by auditing log files. Therefore, the subjects are asked to

strategically allocate a limited number of man hours to the auditing of database log files.

There are five log files, one for each day of the week Monday through Friday. The

subjects are informed that the number of hours assigned to auditing a particular day’s log

file corresponds to the perceived likelihood of the insider attacking on that day. For

example, allocating 10 hours to Monday’s log file indicates a belief that there is a 10%

chance of an attack occurring on Monday.

An important detail is that the days of the week have differing amounts of utility.

The adversary is motivated to exfiltrate as many records as possible, and the number of

records grows linearly throughout the week. Consequently, a successful attack on

Monday is worth 1 point (-1 for the defender) whereas a successful attack on Friday is

worth 5 points (-5 for the defender). The insider threat’s goal is to exfiltrate as much data

as possible while minimizing his chances of being detected. Detection results in -10

points for the attacker (10 for the defender).

49

The defenders are tasked with allocating a total of 100 log auditing hours over the

five log files. The subjects must assign an integer number of hours from [0, 100] to each

day with the constraint that the total number of hours allocated must sum to exactly 100.

The defenders were informed that their performance would be measured against the

actual days chosen by a peer group of students cast in the role of attackers.

Consequently, it was necessary to collect attack data from a peer group of

students. These attack subjects were provided with the same prompt as the defenders, but

instead of allocating log auditing hours to the five different log files, they were tasked

with selecting one of the days of the week on which to attack. To incentivize thoughtful

participation, prizes were offered to the students who identified the best day of the week

to attack, as measured against the defenders’ allocations of man hours. All 33 students

from the peer class participated in the exercise.

Figure 4. Data Breach aggregated attacks (n=33)

0%

10%

20%

30%

40%

50%

Mon Tue Wed Thu Fri

P
er

ce
n

t
C

h
o
se

n

Days of Week

50

4.4 Results

4.4.1 Data Analysis

Figure 4 shows the days chosen by the attack subjects in the Data Breach

exercise. None of the attackers chose Monday or Friday to attack, and the most popular

choice was Wednesday, followed by Tuesday then Thursday.

The Data Breach defender submissions were scored by Microsoft Excel using a

formula that directly correlates accurate attack predictions (i.e., hours placed on days on

which attacks occurred) with points earned. As an example, x hours allocated to

Wednesday would earn more points that x hours allocated to Thursday because more

attackers chose Wednesday than Thursday.

Figure 5. Treatment group pre-post rankings comparison (n=26).

Figure 6. Control group pre-post rankings comparison (n=25).

0

10

20

30

40

50

Pretest Posttest

R
an

k
in

g

0

10

20

30

40

50

Pretest Posttest

R
an

k
in

g

51

Because of a floor effect that occurred in the scores of subjects that allocated all

of the hours to days on which no attacks occurred, the raw scores did not follow a normal

distribution. Therefore, the performance difference between the pretest and posttest was

analyzed using the non-parametric Related-Samples Wilcoxon Signed Rank test. The

null hypothesis for this test is that the median difference between the pair of observation

sets is zero. All statistical analysis was performed with SPSS v.23 using a two-tailed

alpha of .05.

26 of 28 treatment group submissions and 25 of 35 control group submissions

were included in the analysis (identical pretest and posttest submissions were discarded

because they are irrelevant to the Wilcoxon test). Figures 5 and 6 show box-and-whisker

plots of the rankings for the pretests and posttests for the treatment and control groups,

respectively. (For all of the boxplots, the whiskers indicate the min and max rankings.)

The results of the Wilcoxon Signed Rank test for the treatment group indicate that

the null hypothesis should be rejected (p-value = 0.041). This means the subjects’

performance improvement in the posttest is statistically significant at the 95%

significance level. The results for the control group indicate that the null hypothesis

should not be rejected (p-value = 0.706). This means that there was no difference in the

median performance (see Table 8).

Table 8. Comparisons of Group Performance Rankings

Group (A x B) A Mdn Rank B Mdn Rank n p-value

Treatment Pre x Post 35 14.5 26 0.041*

Control Pre x Post 25 28 25 0.706*

Treatment Pre x Control Pre 25.75 31 26, 25 0.891**

*Wilcoxon Signed Rank test **Mann-Whitney U test

52

To summarize, the results show that the students were able to more accurately

predict the days the attack subjects chose after receiving the game theory treatment. In

terms of the research question, this demonstrates that learning about game theory led to

an improved ability to anticipate the strategic choices made by others. Because the two

groups were similar except for the game theory treatment, the performance improvement

must be attributed to the treatment (see section 4.4.3 for an analysis of possible

confounding variables).

Table 9 details how the groups allocated hours across days. The treatment group

redistributed hours on their posttest submissions from the days not chosen by attackers

(Monday and Friday) to the days chosen by the attackers (Tuesday, Wednesday, and

Thursday). This shows that they anticipated that the attackers would be drawn to the

middle of the week.

4.4.2 The Validity and Reliability of the Instrument

The validity of an instrument is a measure of the appropriateness, correctness,

meaningfulness, and usefulness of the specific inferences it can help researchers make

[55]. The inference the Data Breach exercise was designed to help make is that

performance is positively correlated with a subject’s ability to predict the strategic

choices made by other people. The day chosen by the attackers was a strategic choice on

Table 9. Average Allocation of Hours Across Days

Group Mon Tue Wed Thu Fri

Treatment Pre 8.5 11.8 18.4 24.3 36.9

Treatment Post 6.7 14.9 22.4 30.6 25.4

Control Pre 7.6 11.1 16.6 23.5 41.2

Control Post 6.2 9.3 16.1 25.1 43.3

Value of data 1 2 3 4 5

53

their part—they were motivated to choose the day which they believed maximized their

utility (i.e., the day that resulted in stealing the most data while minimizing the

likelihood of being detected). For this reason, and because defender performance is

directly proportional to accurate attacker predictions, the Data Breach exercise has high

validity.

The reliability of an instrument refers to the consistency of the scores it obtains.

Because Data Breach is technically only one question, it is not possible to apply internal-

consistency methods such as the Kuder-Richardson approach or Cronbach’s alpha to

measure its reliability. Therefore, extra care was taken to eliminate threats to its

reliability, including the potential for subjects to misunderstand the instructions.

To minimize this threat, the exercise was administered in a quiet classroom

setting by an instructor who followed a planned script. The exercise prompt was read out

loud to the subjects while they were encouraged to read along. A concise summary of the

salient details of the game were reiterated at the end of the prompt to help ensure that all

of the subjects clearly understood the rules and the pay offs for both the defender and the

attacker. Additionally, a table clearly marked with the values of the days was provided

for the subjects to fill in their chosen hour allocations.

4.4.3 Threats to Internal and External Validity

Of the several different threats to the internal validity of an educational research

experiment identified in [55], two are relevant to this study: testing and subject

characteristics.

With regard to testing, because the subjects took the same measurement

instrument twice, a repeat testing effect could account for a performance difference in the

54

posttest scores. However, the control group showed no performance difference between

the pretest and the posttest, which indicates that the repeat testing effect is not a

confounding variable in this experiment.

Additionally, it should be noted that caution was taken to ensure that the treatment

group did not receive any advantages over the control group that could account for a

performance improvement on the posttest (beyond the treatment itself). For example, the

Data Breach exercise was not discussed as a type of game theoretical game in the

treatment lectures (nor was it discussed at all). Also, the attackers’ selections, which

were used to gauge the defenders’ performance, were not tabulated until after the

posttests were completed, and no preexisting empirical results from the Data Breach

exercise were available because it is a novel game. Therefore, it was not possible for the

instructor to provide any type of performance feedback to the subjects between the

pretest and the posttest, either consciously or subconsciously.

With regard to the internal validity threat of subject characteristics, because the

control and treatment groups were not randomized, it is possible that the two groups

differed in significant ways, and that some of these differences could account for a

Figure 7. Treatment and control pretests rankings comparison (n=26, 25)

0

10

20

30

40

50

Treatment Control

R
an

k
in

g

55

performance difference. However, if the control group and the treatment group did differ

in ways that could affect the validity of the experiment, this difference should have been

reflected in the two group’s pretest scores. But as illustrated in Figure 7, the rankings

were very similar for the two groups’ pretests, and a Mann-Whitney U Independent

Samples Median test confirms (p-value = 0.891) that there was no statistical difference in

their performance (see Table 8). Additionally, the pretest hour allocations for the two

groups were also very similar (see Table 9). The data indicates that the two group’s

starting points with regard to strategic reasoning were comparable.

Furthermore, a selection bias can be ruled out because both groups of subjects

were enrolled in compulsory (i.e., non-elective) computer science classes, and all of the

students in both classes participated. Lastly, none of the subjects had ever taken a course

in cybersecurity or game theory, which are the two most obvious candidates for

characteristics that could impact performance on the Data Breach exercise.

As for the external validity of these results, their scope is limited because the

subjects were not a randomized representative sample of cybersecurity students

everywhere. Therefore the findings from this experiment can be extended only to

students enrolled in computer science classes at small, private, Midwestern universities.

However, there is no compelling reason to believe that for any group of people,

cybersecurity students or otherwise, learning basic game theory concepts would not result

in an improved ability to anticipate the strategic actions of others.

4.5 Discussion

One hypothesis for why the treatment group exhibited an improved ability to

predict the days the attack subjects chose is that learning about game theory encouraged

56

them to consider the perspectives of their adversaries in a new way, and perhaps even for

the first time. Because there was a very high correlation between the allocation of hours

and the values of the days (see Table 9), it appears that the natural focal point of the

students was not on the attackers at all, but on the data they were trying to protect. While

it is commonsense to allocate more hours to the more valuable days, this is not a strategic

way of thinking, because from an attacker’s perspective, the obvious choice is to not

attempt an attack when it is most likely defenders will be expecting an attack. For the

attackers, there was actually a negative correlation between the day values and days

chosen.

Support for this hypothesis comes from post hoc oral interviews with the

treatment subjects. The subjects were asked, “How does knowing about game theory

affect your ability to think strategically?” Many students described a newfound

awareness of the importance of thinking about how the adversary is thinking about a

problem. One student described this widely shared revelation bluntly: “It helps you to

react better if you are thinking about what the other person is going to be thinking

about—how he is going to react to your reactions—[rather] than just assuming that he is

going to be a complete idiot.” Put in another way, this student is saying that it is natural

to fail to take into consideration the perspectives of your adversary when faced with

making a strategic decision, and this is equivalent to underestimating his abilities.

One might object that if it was the students’ ability to think about the scenario

from the attacker’s perspective that caused the performance increase on the posttest, then

the two hours of game theory instruction may have been superfluous and could have been

replaced with a brief exhortation to “try to think like an attacker” while completing the

57

exercise. There are at least two problems with this view. For one, it underestimates to

what extent learning about game theory can help one understand how other people think.

It is one thing to try to think about how another person would approach a strategic

scenario, and another to be equipped with the tools to help you do so. And two,

providing students with a last minute “hint” may help them do better on an exercise or a

test, but it does not demonstrate that the students actually learned anything. The

intention of education is to help students approach a problem in the correct way on their

own. The real power of the game theory instruction was that it helped the students learn

how to think strategically, and this revelation has the potential to make an impact on their

ability to practice cybersecurity long after any “hints” would have been forgotten.

4.6 Conclusion

This chapter has argued that strategic reasoning is an important component of

cybersecurity, and that one of the goals of cybersecurity education should be to develop

the strategic reasoning abilities of students. In Chapter 3, this dissertation has shown that

strategic reasoning is actually an overlooked aspect of adversarial thinking (i.e., of

“thinking like a hacker”)—a widely acknowledged, yet elusive, cybersecurity educational

objective. The classroom experiment that was conducted demonstrates that learning

about game theory resulted in a statistically significant improvement in the students’

abilities to anticipate the strategic choices made by others.

Future research could explore the impact of teaching game theory to cybersecurity

students on their future careers, perhaps by conducting a longitudinal study. Learning

about game theory in a cybersecurity class has the potential to fundamentally alter the

way students view the practice of cybersecurity. It may help to orient them around the

58

adversarial conflict at the heart of cybersecurity, and this could lead to a more strategic-

minded, and therefore better equipped, cybersecurity workforce. As one student

reported, “[game theory] is a fascinating topic…The vast majority of the class has

focused on how to carry out [cybersecurity] from a technical perspective. Balancing that

out with the logic of why and when and where [an attack could] occur is a good [idea].”

59

V. A Model Checking Approach to Characterizing the Fault Tolerance of

Smart Grid Protection Systems*

5.1 Introduction

Smart grid protection systems that utilize communicating processes to provide

relays with additional context and to facilitate coordination are potentially far more

capable than traditional protection systems, but they also introduce new challenges in

critically assessing system reliability. The concurrency that underlies such systems is

notoriously difficult to reason about due to the innumerable ways processes can

potentially interact and share state.

One common way to test the robustness of smart grid protection systems is by

running simulations of basic failure scenarios and then observing the behavior of the

system. While helpful, simulations can only go so far in inspiring confidence in the

reliability of the systems and their underlying software components. First, protection

engineers have to envision the potential failure scenarios ahead of time so they can

program them into the simulations, but in many real-world software catastrophes, it is the

failure scenarios that the engineers failed to think of that end up causing problems, see

“Mismatched Assumptions” in [56]. And second, even the most thorough and robust

simulation testing can only hope to cover a tiny fraction of the potential failure scenario

state space. What is needed is a better way to characterize the entire range of situations

where the software can be considered reliable, and to identify with rigor its precise

breaking point. This information is invaluable to protection engineers during the

* This chapter is based on an article that has been submitted to the IEEE Transactions on Power Delivery journal and is under

review: S. Hamman, K. Hopkinson, J. Fadul, “A model checking approach to characterizing the fault tolerance of smart grid
protection systems,” submitted for publication.

60

development of new systems, for assessing the quality of competing designs, and for risk

management purposes.

Engineers build models of bridges, airplanes, cars, etc. to prove important

reliability properties of their designs before they begin construction. Similarly, software

model checking tools exist to vet distributed software designs. The aerospace,

aeronautical, and automotive industries have used software model checking tools for

decades to help validate their safety-critical software systems, see “Logic Model

Checking” in [56]. While some references to model checking appear in the power

systems literature [57] [58], the practice will be increasingly important as smart grid

systems and their software proliferate in power grids.

The SPIN model checker (SPIN) is one of the most popular, easy to use, and

mature model checking tools. It was created by Gerard Holzmann, a pioneer in the field

of software verification, and currently a Senior Research Scientist for the Jet Propulsion

Laboratory for Reliable Software at NASA [59]. He developed SPIN in the 1980’s, and

he was awarded the prestigious Association of Computing Machinery (ACM) System

Software Award for SPIN in 2001 [56].

This chapter advocates for the use of SPIN by the power grid community to test

the reliability limits of smart grid protection systems. It makes several contributions.

First, it serves as a gentle overview of model checkers for protection engineers motivated

by the need to verify increasingly complex smart grid protection systems. Second, it

illustrates how out-of-the-box, SPIN can verify that a protection system correctly clears a

fault under a given set of conditions. As a final contribution, it demonstrates a

straightforward yet elegant technique where SPIN can help characterize the full fault

61

tolerance of a protection system. In other words, SPIN can test how many and what types

of system failures can be tolerated, in combination, before the system stops operating

properly. This quantitative assessment of the fault tolerance of a communication-based

smart grid protection system can be extremely useful when deciding between alternate

designs or choosing what additional mechanisms are necessary to ensure proper

protection levels. After providing some background on related work and a brief primer

on SPIN, this chapter illustrates these techniques by applying SPIN to a published wide-

area backup protection system (WABPS).

5.2 Related Work

Petri nets are a graphical and mathematical tool that were designed for modeling

complex systems, and they have been used to verify power systems in other research (see

[60] [61] [62], for a survey paper, see [63]). Basic petri nets are relatively easy to

construct and verify [64], but to model properties of more complex systems like

WABPSs, many extensions are likely necessary, including G-nets, colored petri nets, and

composite places (see [62] for a verification of a WABPS that utilizes petri net

extensions). The complexity these petri net extensions place on software engineers pose

a steep learning curve to would-be modelers, and they make it difficult to reason about

and verify the correctness of the petri net model itself.

SPIN has many advantages over the petri net approach to smart grid protection

system verification. Although model checkers accomplish the same end as petri nets in

that they verify software designs, they do so in an automated, brute-force manner, which

means it is not necessary for a person to verify the results by following complex logic in

a step-by-step manner like in a traditional mathematical proof. SPIN’s design description

62

language is similar enough to other programming languages that proficient programmers

can learn to use SPIN relatively easily. And because the models are written using

familiar programming constructs, such as data structures, conditional branching

statements, and loops, they are easier to comprehend than intricate graph-based petri net

models.

Tools similar to SPIN have been applied to verify protection systems. [65]

proposes an automated simulation-based verification technique to verify the correctness

of relay operations, [57] applies the probabilistic model checker PRISM to verify

Markovian models of relay protected components, [58] applies RuleBase, a proprietary

IBM model checker, to the verification of hybrid control systems, and [66] applies the

Siemens’ software tool SIGUARD to verify the protection settings of power systems.

A few of the ways that SPIN has been used successfully in the real world are in

verifying NASA mission critical software; such as, the Mars Exploration Rovers and

Deep Impact, in a vehicle malfunction investigation involving the 2005 Toyota Camry,

and in the verification of medical device transmission protocols [67]. SPIN has also been

applied to verify the fault-tolerance of other types of distributed software systems [68]

[69].

Many different model checking tools exist, and each has its own set of appropriate

verification tasks. For example, software engineers at Amazon apply the model checker

TLA+ to the complex distributed systems that underlie their Amazon Web Services [70].

5.3 SPIN Background

SPIN [56] [71] [72] belongs to a class of software tools called model checkers

which are a subset of hardware and software verification techniques known as formal

63

methods—the applied mathematics of design verification. The Federal Aviation

Authority (FAA), which has experience investigating the causes of catastrophic software

failures in aircraft, recommends, “Formal methods should be part of the education of

every computer scientist and software engineer, just as the appropriate branch of applied

mathematics is a necessary part of the education of all other engineers” [73]. Model

checking is a verification technique coined by Clarke and Emerson in the 1980’s [74] that

uses optimized algorithms and tailored data structures to efficiently explore all possible

system states in a brute-force manner. The theoretical and mathematical foundations of

model checking are finite automata theory and linear temporal logic [75].

While neither SPIN nor any model checker should be characterized as the “best”

for all tasks and from all perspectives, SPIN has many strengths: it is free and open

source, it is very well documented, it is a mature software product, it is under active

development as of 2016, the syntax of its PROMELA programming language (a

contraction of Process MetaLanguage) is C-based and familiar, and SPIN has several

added-on features to ease model creation (e.g., a graphical user interface and support for

auto-generating models from source code).

SPIN was originally an acronym for Simple PROMELA Interpreter, but has now

become a stand-alone term. Because SPIN is intended to model concurrent systems,

PROMELA has built-in support for modeling nondeterministic behavior. PROMELA is

technically not a programming language like C or Java, but a “systems description

language” targeted to “the descriptions of concurrent software systems” [56]. It was

designed to help the programmer think in terms of the functions of a distributed system,

64

and it makes it easy to capture common constructs like message passing, shared memory,

nondeterministic behavior, and the atomic execution of instruction sequences.

The short example PROMELA program in Figure 8 illustrates a nondeterministic

if statement on lines 4-7. In PROMELA if statements, if more than one guard condition

can be evaluated as true (as in this example), then each of them will be executed in some

execution of the model, not just the first true guard expression as is the case with if

statements in traditional programming languages.

The example program also illustrates the ease with which multiple interacting

processes can be modeled. The “[3]” on line 3 indicates that three concurrent processes

will be created, which could easily be changed to any other desired number of concurrent

processes. Part of the nondeterminism that SPIN will execute in the model is the

arbitrary interleaving of instruction executions by the three processes. Because the

variable “x” is declared in global scope, all of the processes share its state, so the

interleaving of instructions matters.

1 byte x;

2

3 active [3] proctype counting() {

4 if

5 ::(true)-> x = 0;

6 ::(true)-> x = 2;

7 fi

8 printf("Starting value of x: %d\n", x);

9

10 do

11 ::(x < 3) -> x++;

12 ::else -> break;

13 od

14 printf("Ending value of x: %d\n", x);

15

16 assert (x==3)

17 }

Figure 8. The PROMELA source code for a simple example program

65

SPIN is capable of either interpreting a PROMELA source code model in a

simulation run, or of compiling a PROMELA source code model into a standalone C

program for verification (the C program is conventionally called “pan” which is short for

“protocol analyzer”). When a PROMELA model is run in simulation mode, one

particular possible sequence of instructions is selected randomly and then executed.

1 C:\spin>spin promela_example.pml
2 Starting value of x: 2
3 Starting value of x: 2
4 Starting value of x: 2
5 Ending value of x: 3
6 Ending value of x: 3
7 Ending value of x: 3
8 3 processes created

Figure 9. A SPIN simulation run of the example program

1 C:\spin>pan
2 pan:1: assertion violated (x==3) (at depth 26)
3 pan: wrote promela_example.pml.trail
4
5 (Spin Version 6.4.5 – 1 January 2016)
6 Warning: Search not completed
7 + Partial Order Reduction
8
9 Full statespace search for:
10 never claim - (none specified)
11 assertion violations +
12 acceptance cycles - (not selected)
13 invalid end states +
14
15 State-vector 24 byte, depth reached 39, errors: 1
16 41 states, stored
17 0 states, matched
18 41 transitions (= stored+matched)
19 0 atomic steps
20 hash conflicts: 0 (resolved)
21
22 Stats on memory usage (in Megabytes):
23 0.002 equivalent memory usage for states
24 0.291 actual memory usage for states
25 64.000 memory used for hash table (-w24)
26 0.343 memory used for DFS stack (-m10000)
27 64.539 total actual memory usage
28
29
30
31 pan: elapsed time 0.016 seconds
32 pan: rate 2562.5 states/second

Figure 10. The SPIN verification run of the example program

66

Figure 9 illustrates one possible execution of the example program from Figure 8. The

indentation level of the output statements correspond to the process that produced them.

In this particular simulation, when all three processes executed the assert statement on

line 16, the value of x was 3, so no errors were reported.

When a model is run in verification mode, every possible sequence of instruction

sequences is executed. Figure 10 illustrates that executing the program from Figure 8 in

verification mode results in an assertion violation (line 2). When assertion failures occur,

SPIN produces a “trail” file (line 3) that can be executed in simulation mode that shows

the specific sequence of events that produced the error. Figure 11 is the trail produced by

SPIN in Figure 10, and it shows that in this particular failure scenario, process 2 executed

the assert statement (line 6) in the example program after process 0 set the value of x to 0

(line 12), so x was equal to 0 (line 10) when process 2 asserted it was equal to 3, which

caused the error. By default, SPIN stops executing after the first error is found, since one

counter-example is sufficient to prove incorrectness. However, SPIN is also capable of

enumerating all of the different ways a model can fail validation (in this example there

are 510).

1 C:\spin>spin –t promela_example.pml
2 Starting value of x: 0
3 Ending value of x: 3
4 Starting value of x: 0
5 Ending value of x: 3
6 spin: promela_example.pml:16, Error: assertion violated
7 spin: text of failed assertion: assert((x==3))
8 spin: trail ends after 27 steps
9 #processes: 2
10 x = 0
11 27: proc 1 (counting:1) promela_example.pml:17 (state
12 27: proc 0 (counting:1) promela_example.pml:8 (state
13 3 processes created

Figure 11. The “trail” produced by SPIN showing a specific failure scenario

67

5.4 SPIN Smart Grid Software Case Study

5.4.1 Tong’s WABPS

Because of its elegant and relatively simple design, Tong et al.’s WABPS [76]

was selected to illustrate how SPIN can be applied to characterize the fault tolerance of

smart grid software. Tong’s backup protection system uses smart grid technology to

leverage wide-area communication among software decision agents embedded in

intelligent electronic devices (IEDs), to clear electrical faults more quickly and efficiently

Figure 12. A detailed state transition diagram of LDAs in Tong’s WABPS [76]

68

than is possible with non-communicating protection systems. Smart grid communication

allows the agents to gain better situational awareness and facilitates faster and more

effective coordination. As [76] describes Tong’s WABPS, it “is a regional decentralized

peer-to-peer negotiating WABPS multi-agent system that takes into account local and

adjacent line, first and second zone, distance protection and directional protection

systems as well as fault states from additional lines. This information is then fused to

facilitate the creation of a highly accurate WABPS that resides between the main

protection and remote backup protection systems.”

Figure 12 is a detailed state transition diagram from [76] that illustrates the

operation of the local decision agents (LDAs), which is where the core line fault-

identifying intelligence resides in the system. During the WABPS’s operation, which is

triggered by any abnormal state reported by an IED, regional decision agents (RDAs)

located in substations alert the appropriate LDAs which then perform a decentralized,

three step calculation to ascertain the state of their lines. Over the course of the three

steps, an LDA may transition its line’s state between normal, special, suspect, and fault

as it gathers information, performs calculations, shares information with other LDAs, and

homes in on its determination of the state of its line. The special and suspect states are

transitional states only, and the fault and normal states are end states.

In the three step algorithm, first the LDA performs an author-defined Action

Factor (AF) calculation based on the state of the directional relay, primary relay, and

secondary relay reported by its two local line IEDs (Step 1). Second, depending on the

severity of the situation, this may be followed up by an author-defined Certification

Factor (CF) calculation that takes into account the state information of IEDs on adjacent

69

lines (Step 2). Lastly, the LDAs share the state of their line and their CF calculations

with neighboring LDAs, and this information is used to resolve any remaining ambiguous

line states (Step 3). If after Step 3 an LDA ends up in the normal state, no further action

is taken. If, on the other hand, an LDA ends up in the fault state, a tripping order is sent

to the circuit breakers on both ends of the line which are able to mechanically clear the

fault.

The main benefit of a wide-area backup protection system is that fault data is

collected over multiple lines (i.e., a wide area) and is synthesized to determine the

precise location of the fault. In Tong’s WABPS, this is done in a decentralized peer-to-

peer manner. Decentralized peer-to-peer architectures do not suffer from a single point

Figure 13. WABPS’s layout on the IEEE 14-bus test case [76]

70

of failure, as centralized architectures do, and this is one of the main features that

contribute to their robustness. However, due to the inherent complexity of this type of

architecture, it is also non-trivial to reason about how the system behaves when certain

failure scenarios occur. Because state is shared among several peer processes, a single

IED state change may affect multiple LDAs, and this information may cascade as LDAs

coordinate with one another over the course of the algorithm’s execution.

The authors of [76] state that the WABPS is “highly reliant and fault tolerant,”

and they simulate four different failure scenarios on the EPOCHS simulation platform

[77] to support their claim. Figure 13 shows the topology of the IEEE 14-bus test system,

which is the model power grid that was chosen by the WABPS’s authors to test its

Table 10. IEDs Directly Incorporated into LDA Line State Calculations

IED ID LDA15 LDA12 LDA14 LDA09

3

X

4

X

5

X

6

X

7

X

8

X

11

X

12

X

13

X

X

14

X

X

15 X

X

16 X

X

17

X

18

X

19

X

20

X

21 X X X

22 X X X

23

X X

24

X X

27 X X X

28 X X X

29 X X X X

30 X X X X

71

operation in the simulations they performed. The four simulations they perform all

revolve around the occurrence of a single-line fault on line 15 (L15). L15 was chosen as

a representative of a single line fault that could occur anywhere in the system.

For the scenario where a single-line fault occurs on L15, data from 24 IEDs are

incorporated into the WABPS’s three step algorithm, which is simultaneously executed

by LDAs on four different lines (L12, L9, L15, and L14). Each LDA incorporates the

state from an overlapping set of IEDs to independently determine the location of the fault

(see Table 10 for a summary of how IED state is shared among the LDAs). The core

input into the calculation is the state of IEDs, which are complex cyber-physical systems

that sense power line data; such as, current, voltage, and frequencies for all three phases

of electricity. This information is then used to determine the state of their resident

directional relay {bus-to-line fault, line-to-bus fault, no fault}, primary relay {fault, no

fault}, and secondary relay {fault, no fault}. During a fault on L15, the WABPS as a

whole may incorporate up to a total of 72 discrete states (24 IEDs × 3 relay states per

IED) into its calculations. 48 of the states are binary (the primary and secondary relays),

and 24 of the states are ternary (the directional relays), making the total state space that is

potentially involved with a single-line fault calculation 248 × 324 ≈ 8 × 1025 possible

states.

However, the vast majority of these states are never reached because the 24 IEDs

take on predictable values during a fault on L15. When no errors are present in the

system, it is trivial to show that the WABPS performs its function correctly. However,

the test of the WABPS’s fault tolerance is how well it performs when errors do arise in

72

the system. The following is the list of possible errors that are anticipated in the WABPS

design:

1. an IED takes a bad reading

2. any of the three IED relays fail to operate

3. any of the three IED relays malfunction (e.g., detect a fault when one does not

exist or vice versa)

4. an IED transmits a correct relay reading, but the message is corrupted

5. an IED transmits a correct relay reading, but the message is lost

6. an IED fails to operate entirely

7. an IED fails to communicate entirely

The simulations the authors of [76] performed demonstrate that the WABPS

functions correctly in four scenarios where different combinations of these seven errors

occur.

5.4.2 Modeling Tong’s WABPS

Even though SPIN uses advanced algorithms and optimized data structures to

achieve extremely high throughput in its brute-force state space search, it is important to

keep SPIN models of concurrent software designs as simple as possible, due to the state

space explosion problem that quickly arises. For this reason, when constructing a SPIN

model, the most important guiding principle is the identification of the smallest sufficient

model of the software design that captures the properties one wants to prove [56].

Three types of processes are identified in [56] as superfluous in a SPIN model:

sink processes, source processes, and filter processes. Tong’s WABPS, like almost all

real-world software, contains examples of each. The RDAs are filter processes. Their

73

job is to activate LDAs and coordinate communication between them. The IEDs are

source processes. They act solely as sources of relay state information. Lastly, in the

WABPS, each IED on a line has an accompanying LDA, which results in two LDA’s per

line. Because both of the LDA’s on a line share all of their state information with one

another, one of them can be safely considered a redundant sink process, where

information flows in but never out. Therefore, each of these types of processes have been

either omitted, or replaced with a higher level abstraction in the SPIN model.

1 failuresSoFar = 0;

2 do

3 ::(failuresSoFar < maxFailures)->

4 if

5 ::iedIsSelectable(IED03)->failureType(IED03);

6 ::iedIsSelectable(IED04)->failureType(IED04);

7 ::iedIsSelectable(IED05)->failureType(IED05);

8 ::iedIsSelectable(IED06)->failureType(IED06);

9 ::iedIsSelectable(IED07)->failureType(IED07);

10 ::iedIsSelectable(IED08)->failureType(IED08);

11 ::iedIsSelectable(IED11)->failureType(IED11);

12 ::iedIsSelectable(IED12)->failureType(IED12);

13 ::iedIsSelectable(IED13)->failureType(IED13);

14 ::iedIsSelectable(IED14)->failureType(IED14);

15 ::iedIsSelectable(IED15)->failureType(IED15);

16 ::iedIsSelectable(IED16)->failureType(IED16);

17 ::iedIsSelectable(IED17)->failureType(IED17);

18 ::iedIsSelectable(IED18)->failureType(IED18);

19 ::iedIsSelectable(IED19)->failureType(IED19);

20 ::iedIsSelectable(IED20)->failureType(IED20);

21 ::iedIsSelectable(IED21)->failureType(IED21);

22 ::iedIsSelectable(IED22)->failureType(IED22);

23 ::iedIsSelectable(IED23)->failureType(IED23);

24 ::iedIsSelectable(IED24)->failureType(IED24);

25 ::iedIsSelectable(IED27)->failureType(IED27);

26 ::iedIsSelectable(IED28)->failureType(IED28);

27 ::iedIsSelectable(IED29)->failureType(IED29);

28 ::iedIsSelectable(IED30)->failureType(IED30);

29 fi

30 failuresSoFar++;

31 ::else->break;

32 od

Figure 14. The nondeterministic if statement that verifies all combinations of

failures

74

It is important to note that none of these abstractions prevent the SPIN model

from capturing important behavior of the RDAs, IEDs, and LDAs in the WABPS. For

example, even though RDAs have been abstracted out of the model entirely, it is still

possible to model a scenario where an RDA fails by modeling failed communication

between LDA processes. Similarly, IEDs in the SPIN model are not represented as

independent concurrent processes, but as data structures with three state variables (e.g.,

directional relay, primary relay, secondary relay). However, by manipulating the state of

the IED data structures, it is possible to model IED mechanical and communication

failures.

5.4.3 SPIN Testing Tong’s WABPS

Using SPIN to characterize the fault tolerance of any smart grid protection system

begins with two fundamental observations:

1. The list of things that could go wrong (typically captured in the model by

nondeterministic if statements, as in Figure 14)

2. The list of things that must go right (typically captured in the model with one or

more assert statements)

Out-of-the-box, SPIN will verify the software design by testing every possible

combination of items in list 1 against every item in list 2 and will return a binary

result: success or failure. However, by parameterizing the list of things that could go

wrong with a counter variable, SPIN can be used to test protection system designs

against an increasing number of failures until the system reaches its breaking point.

When this happens (which for every system is inevitable as the count increases), SPIN

can report exactly how many of the combinations lead to assertion failures. With this

75

information, protection engineers can know where the system can break, why, and to a

degree, how likely such a break is in the universe of possibilities.

Tong’s WABPS is an experimental, research-only, backup protection system,

therefore, a full specification of its operation does not exist. Without a complete

specification, it is impossible to fully model the design of a system. In fact, one of the

benefits of SPIN promoted by Holzmann in [56] is that SPIN is useful for helping to

identify gaps in design specifications, and partly for this reason, it is ideal to incorporate

SPIN into the software design phase of the software development life-cycle (SDLC) (this

is analogous to the building of model bridges before any actual bridge construction takes

place). However, in this chapter, SPIN is being applied after-the-fact to a demonstration-

only version of a system.

Therefore, the SPIN model of Tong’s WABPS in this chapter was limited to

failure scenarios where the system was fully specified, which is the list of seven error

types outlined in the previous section during a single-line fault on L15—this is the list of

things that could go wrong.

The list of things that must go right were captured in two different forms. The

first is that L15, and only L15, is identified as the faulted line (termed strong

correctness). This is the ideal operation of the algorithm and the definition used in [76].

The second is a relaxation where at least L15 (as opposed to only L15) is identified as the

faulted line (termed weak correctness). This could also be considered a type of correct

operation because the WABPS would still clear the fault, but just not in the most efficient

manner possible. Correctness under both definitions were tested in separate rounds of

testing.

76

To characterize the full fault tolerance of the system, SPIN was used to stress-test

the system in three different ways. First, n single component IED failures were tested in

combination. Single IED component failures cover items 1-5 on the error list. Second, m

total IED failures were tested in combination. Total IED failures covers items 6-7 on the

error list. Third, combinations of n single IED component and m total IED failures were

tested. These three categories comprehensively cover the entire range of tests from

which only a sample of four was selected to simulate in [76]. While simulations are

useful for demonstrating that the system can operate correctly under a given number of

failures, by incrementing the number and type of failures as described above, SPIN can

prove the fundamental fault-tolerance limits of the system. The result is a rigorous

statement of the system’s fault tolerance that does not rely upon anecdotal evidence.

Modeling the three step algorithm in SPIN, and the message passing between

LDA agents, caused the SPIN model of Tong’s WABPS to be somewhat lengthy (around

1 C:\spin>spin wabps_model.pml
2 Turned Off IED15
3 Turned Off IED30
4 Turned Off IED7
5 LDA15 Start
6 Step 1 – L15 State: SUSPECT
7 Step 2 – L15 State: SUSPECT
8 LDA12 Start
9 Step 1 – L12 State: NORMAL
10 Step 2 – L12 State: NORMAL
11 Step 3 – L12 State: NORMAL
12 LDA12 Final: L15:NO_DATA, L12:NORMAL, L14:NO_DATA, L9:NO_DATA
13 LDA14 Start
14 Step 1 – L14 State: NORMAL
15 Step 2 – L14 State: NORMAL
16 Step 3 – L14 State: NORMAL
17 LDA14 Final: L15:NO_DATA, L12:NO_DATA, L14:NORMAL, L9:NO_DATA
18 LDA9 Start
19 Step 1 – L9 State: NORMAL
20 Step 2 – L9 State: NORMAL
21 Step 3 – L9 State: NORMAL
22 LDA9 Final: L15:NO_DATA, L12:NO_DATA, L14:NO_DATA, L9:NORMAL
23 Step 3 – L15 State: FAULTED
24 LDA15 Final: L15:FAULTED, L12:NO_DATA, L14:NO_DATA, L9:NO_DATA

Figure 15. Simulation run of WABPS model testing three total IED failures and

showing the system functioning correctly

77

500 lines of code, see Appendix B). Figure 14 is an important code snippet from the

model that illustrates the simplicity with which the seven IED failure scenarios from [76]

were modeled with SPIN. This simple nondeterministic if statement ensures that every

possible combination of failures is tested. SPIN even determines whether the order of

combinations affects the calculation of faults, so the combinations are tested exactly

once. This is a powerful construct, and one of the main ways PROMELA adds value for

constructing brute-force verifications compared to trying to leverage traditional

programming languages to accomplish the same task. The variable maxFailures (line 3)

is the counter parameter that was tuned over multiple tests to capture the precise degree

of fault tolerance of the system.

Figure 15 shows the output of a simulation run of the SPIN model of Tong’s

WABPS, where three total IED failures are tested. In this case, IEDs 15, 30, and 7 were

selected at random by SPIN, and the results of the calculation shows that the system was

able to accurately identify the location of the fault. The output was produced by printf

statements that are in the model solely for debugging purposes, and have no bearing on

Table 11. Results of SPIN’s Fault Tolerance Verification of Tong's WABPS*

Strong Correctness Weak Correctness Runtime Statistics**

Type of

Failure

Number of

Failures

Total Possible

Scenarios

Number of

Errors

Error

Percentage

Number of

Errors

Error

Percentage

Time Elapsed

(secs)

Memory Used

(MBs)

Single IED

Component

1 96 0 0% 0 0% 0.02 129.7

2 4,536 0 0% 0 0% 0.96 200.8

3 140,624 268 0.191% 60 0.043% 60.2 4,359.2

Total IED

1 24 0 0% 0 0% 0.00 128.9

2 276 0 0% 0 0% 0.05 130.8

3 2,024 6 0.296% 2 0.099% 0.28 146.7

Single,

Total

1, 1 2,208 0 0% 0 0% 0.19 84.9

2, 1 99,912 247 0.247% 77 0.077% 16.9 1,727.8

1, 2 25,392 45 0.177% 10 0.039% 2.57 347.4

* All verification runs were performed using SPIN v.6.4.5 (1 Jan 2016) for Linux 64-bit, on a commodity machine with modest specs

** The runtimes and memory usage stats are for the strong correctness runs (weak correctness runs were comparable)

78

SPIN verification runs. Of course, in the verification runs, all combinations of 3 failures

were tested.

5.4.4 SPIN Results

Table 11 provides a summary of the results of the SPIN tests that were performed.

The parameters for the number of failures to test were increased until the system reached

its breaking point. This resulted in over 275,000 scenarios being tested, and a conclusive

statement on the robustness of the WABPS. Even though the robustness of the WABPS

was highlighted a number of times in [76], no definitive statements characterizing the

limits of its fault tolerance were made. But it can now be stated with rigor that the

WABPS’s design can handle all combinations of two single IED component failures, all

combinations of two total IED failures, and all combinations of one single IED

component failure and one total IED failure.

1 C:\spin>spin –t wabps_model.pml
2 Turned Off IED29
3 Turned Off IED30
4 Turned Off IED28
5 LDA15 Start
6 Step 1 – L15 State: SPECIAL
7 Step 2 – L15 State: SUSPECT
8 LDA12 Start
9 Step 1 – L12 State: NORMAL
10 Step 2 – L12 State: NORMAL
11 Step 3 – L12 State: NORMAL
12 LDA12 Final: L15:NO_DATA, L12:NORMAL, L14:NO_DATA, L9:NO_DATA
13 LDA14 Start
14 Step 1 – L14 State: SPECIAL
15 Step 2 – L14 State: SUSPECT
16 LDA9 Start
17 Step 1 – L9 State: NORMAL
18 Step 2 – L9 State: NORMAL
19 Step 3 – L9 State: NORMAL
20 LDA9 Final: L15:NO_DATA, L12:NO_DATA, L14:NO_DATA, L9:NORMAL
21 Step 3 – L14 State: FAULTED
22 LDA14 Final: L15:NO_DATA, L12:NO_DATA, L14:FAULTED, L9:NO_DATA
23 Step 3 – L15 State: NORMAL
24 LDA15 Final: L15:NORMAL, L12:NO_DATA, L14:FAULTED, L9:NO_DATA
25 spin: wabps_model.pml:219, Error: assertion violated
26 spin: text of failed assertion: assert(((((agent15Verdict[0]==FAULTED)||(agent12
 4Verdict[0]==FAULTED))||(agent09Verdict[0]==FAULTED)))
27 spin: trail ends after 345 steps

Figure 16. The trail simulation run showing one of the two ways that the WABPS

fails weak correctness when three total IED failures occur

79

SPIN was also used to calculate the total number of scenarios that caused the

WABPS to fail even after it reached its breaking point, which provides more information

about the system’s robustness. It is beyond the scope of this chapter to qualitatively

assess these results, but a protection engineer would be able to incorporate all of this data,

along with the probabilities of these types of errors occurring, into a risk management

assessment of the system.

It is noteworthy that only a handful of scenarios where three IEDs fail break the

system. Figure 16 shows one of the two scenarios that SPIN identified where three total

IED failures cause the system to fail to determine that L15 is faulted. As highlighted

earlier, the ideal time to incorporate SPIN is early in the SDLC. In this case, this

information may have been helpful as the designers of the WABPS were making tweaks

to the calculations, parameters, and constants involved in the three step algorithm. SPIN

may have been helpful for testing alternatives, and this may have resulted in a modified

system with improved fault tolerance.

5.5 Conclusion

In conclusion, this chapter demonstrates how SPIN can be applied to characterize

the fault tolerance of smart grid protection systems. It illustrates how the process begins

by creating a PROMELA model of the basic design of the system. Next, after the list of

things that must go right have been incorporated into the model, the type and number of

things that might go wrong are incremented in separate rounds of testing until an error is

reported. SPIN’s trail files can then be used to analyze the edge-case failure scenarios.

The SPIN model of Tong’s WABPS used in this chapter is a high-level

abstraction of the salient design of the system, and is intended only to verify the design’s

80

robustness and only under the specified error types. This is analogous to the way that

successful simulations of the system, such as those performed in [76], do not guarantee

correct real-world operation.

Model checking is not a substitute for other types of system testing, but serves as

a helpful complement that is uniquely capable of catching design flaws, identifying

incomplete specifications, and characterizing the fault tolerance of systems. SPIN was

designed to aid in the development of any type of concurrent software, including the

distributed, communication-based systems that are becoming more and more prevalent in

the power grid. SPIN and other model checkers have been used for many years to

enhance the safety and reliability of critical software systems in many domains. Model

checkers can be similarly applied to help mitigate the complexity inherent in safety-

critical coordinated network smart grid protection systems.

81

VI. Conclusion

This dissertation advances automated methods to improve the cybersecurity of

CPSs through the application of behavioral game theory and model checking and

advocates teaching certain foundational principles of these methods to cybersecurity

students. The overarching research questions this dissertation answers are:

RQ1: Can automated reasoning, including model checking and integer linear

programs that model game theoretic concepts, be applied to improve the

cybersecurity of CPSs? If so, can insights gained from these techniques be

effectively imparted to cybersecurity students?

It answers these questions by examining four more specific and distinct research

questions that comprise chapters 2-5 of this dissertation. A summary of each chapter’s

research contributions follows.

Chapter 2 argues that any promising approach to CPS protection planning must

take into account the strategic nature of adversaries, because failure to do so is naïve and

unlikely to be effective. It answers the research question:

RQ2: Can the concept of level-k reasoning be automated to create CPS defense

allocations that counteract human-generated attack allocations?

To accomplish this, it integrates the concept of level-k reasoning from behavioral game

theory into an integer linear program that solves the newly defined security Colonel

Blotto game, a model of the scarce resource allocation problem inherent in CPS

protection planning. It details an experiment performed with human subjects and based

on the parameters of a published CPS, where the recommended L3 strategy finished 3rd

place out of 92 human competitors. This provides validation that the approach is capable

82

of automating defense allocations that successfully counteract human-generated attack

allocations.

Chapter 3 highlights the need for a proper definition of the term adversarial

thinking for cybersecurity—arguably cybersecurity education’s most important learning

objective. Because a robust definition does not exist, it is not clear whether current

curriculum guidelines provide the necessary guidance for teaching adversarial thinking in

the classroom. The chapter answers the research question:

RQ3: Can Sternberg’s triarchic theory of intelligence provide a paradigm for

defining adversarial thinking for cybersecurity that identifies practicable student

learning outcomes?

It demonstrates how Sternberg’s theory provides a helpful lens for unpacking what it

really means to “think like a hacker,” and this exercise produces a novel definition that

sheds new light on the characteristic thought processes of proficient hackers. Most

beneficially, the new definition leads directly to three new and well-defined learning

outcomes for cybersecurity, including one that draws attention to the importance of

strategic reasoning for adversarial thinking. Furthermore, the chapter suggests that

strategic reasoning is a skill which has the potential to be developed in cybersecurity

students.

Chapter 4 takes up the challenge of developing the strategic reasoning abilities of

cybersecurity students. It answers the research question:

RQ4: Does learning basic game theory concepts improve a student’s ability to

anticipate the strategic choices made by other people?

83

With a pretest-posttest educational experiment that includes a control group and an

original measurement instrument, it demonstrates that learning basic game theory

concepts results in a statistically significant improvement in a student’s ability to

anticipate the strategic choices made by others. Additionally, the chapter provides

curriculum details which will aid other cybersecurity educators who seek to teach basic

game theory concepts in their classrooms. The chapter also presents evidence gathered

from student oral interviews that suggests that learning about game theory in a

cybersecurity course has the potential to help to orient students around the adversarial

conflict at the heart of cybersecurity. The research findings in this chapter could lead to a

more strategic-minded, and therefore better equipped, cybersecurity workforce

And finally, Chapter 5 tackles the problem of rigorously characterizing the fault

tolerance of CPSs. Critically assessing the reliability of such systems is non-trivial due to

their inherent complexity and concurrency which makes reasoning about their operation,

especially in light of various combinations of failure scenarios, difficult. The chapter

answers the research question:

RQ5: Can the SPIN model checker be applied to automate the identification of

the degree of fault tolerance of CPSs?

It demonstrates that SPIN can be applied in an iterative manner to determine the degree

of fault tolerance of a published decentralized peer-to-peer CPS, for which only anecdotal

evidence of its robustness based on four failure scenario simulations exists. Over

275,000 failure scenarios were examined during the SPIN tests that were performed on

the system’s core decision algorithm, and these tests prove in a brute-force manner the

precise degree of the system’s fault tolerance. The same technique applied in this chapter

84

is applicable to a wide variety of CPS software designs, and it provides key insights into

understanding the security vulnerabilities of such systems.

 In summary, this dissertation has specifically made four main contributions:

 Integrates behavioral game theory concepts into an integer linear program to

strategically allocate security resources. This program bested nearly all of the human

competitors in an attack and defend competition, indicating high effectiveness against

intelligent adversaries.

 Defines a new framework for adversarial thinking for cybersecurity based on

Sternberg’s triarchic theory of intelligence. The new definition provides actionable

student learning outcomes, which was a weakness of previous definitions.

 Demonstrates the impact of teaching basic game theory concepts to cybersecurity

students through a pretest-posttest educational experiment.

 Illustrates the power of model checking to precisely identify the degree of fault-

tolerance for smart grid protection systems, which are an important category of CPSs.

The applied model checking technique is applicable to a wide variety of CPS

software designs, and it provides key insights into understanding the security

vulnerabilities of CPSs.

6.1 Future Work

There are at least two future research directions that are natural continuations of

this dissertation. The first could attempt to apply the research findings from Chapter 5 to

a cybersecurity educational context, similarly to the way the game theory research from

Chapter 1 was successfully applied to cybersecurity education in Chapters 2 and 3. This

research could examine the question:

85

R6: Does learning how to use SPIN improve a student’s ability to write more

secure and reliable software?

Specifically, this research would emphasize how model checking, which is a software

engineering best practice in safety-critical industries such as the aerospace and

aeronautical industries, is not currently being included in secure software development

modules in cybersecurity educational curriculums. While students are educated on many

different types of software testing, including security testing, these forms of software

testing are inadequate for verifying distributed software—the increasingly dominant type

of software being produced today due to the proliferation of network-based applications.

It is notoriously difficult to write error-free distributed software because of its inherent

concurrency, which leads to a multitude of possible ways that program states and

communications can interleave. In today’s world of cyber warfare, software bugs

become exploits, and when it comes CPSs like the smart grid, exploits become threats to

society. Therefore, researching methods to improve the next generation of software

developers’ abilities to write more secure and reliable software could make a significant

contribution to the future of cybersecurity.

The second research direction that is a natural continuation of this dissertation

would be to combine the research findings from Chapter 2 on behavioral game theory,

with the findings from Chapter 5 on SPIN, into a novel, two-phased approach to

improving CPS cybersecurity. The top-down approach of Chapter 2 and the bottom-up

approach of Chapter 5 have the potential to be unified, creating a novel technique capable

of identifying the most vulnerable points in a CPS (the SPIN research) and then

reinforcing precisely those points in the most efficient manner possible (the behavioral

86

game theory research). This two-phased approach could potentially inform a highly

strategic protection posture which would provide a meaningful contribution to the

cybersecurity of CPS.

87

Appendix A: The Data Breach Measurement Instrument

Data Breach Exercise - Defense

Imagine a large company with a deeply entrenched and ancient mainframe computer where

they collect new customer data. The mainframe is difficult to secure due to technology

constraints. To mitigate the damage from a data breach, every weekend they run a large job

that moves all of the data off of the mainframe and onto a more secure server.

During any given week they are concerned that an insider might copy all of the customer data

off of the mainframe and sell it on the black market. The only deterrent they have against such

an attack is the threat of auditing the log files, and going forward they have decided to allocate

100 man hours per week to that task.

They collect about the same amount of data each day, therefore, the database grows linearly

throughout the week. The database starts fresh on Monday mornings because of the weekend

migration job. For simplicity, assume that the number of hours allocated to inspecting the logs

equals the likelihood of detecting an attack. For example, if x hours are assigned to a particular

day’s logs, and an insider attacks on that day, then the chance of detecting the insider is x

percent. Also assume that if the insider is detected, the threat will be eliminated resulting in a

“reward” equal to 10 points for the company.

They have hired you as a cybersecurity consultant because they need help. Your job is to

allocate the 100 man hours over the 5 log files. Fill in the table below with integers in the

range [0, 100] and make sure they sum to 100.

Log files: Monday Tuesday
Wednesda

y

Thursda

y
Friday

Value of database: 1 2 3 4 5

Hours spent auditing

logs:

 (must sum to 100)

The company that hired you wants to know how you came up with this particular allocation of
hours. Briefly describe what you would tell them:

88

Appendix B: The SPIN Model of Tong’s WABPS

1 // this is like a struct in C++, and encapsulates an IED's state

2 typedef ied {

3 byte id; // ied number

4 mtype dir; // directional_relay

5 mtype pri; // primary_relay

6 mtype sec; // secondary_relay

7 bool dirOn;

8 bool priOn;

9 bool secOn;

10 };

11

12 // globally defined IEDs (there are 24 of them)

13 ied IED29;

14 ied IED30;

15 ied IED15;

16 ied IED16;

17 ied IED21;

18 ied IED22;

19 ied IED27;

20 ied IED28;

21 ied IED03;

22 ied IED04;

23 ied IED05;

24 ied IED06;

25 ied IED07;

26 ied IED08;

27 ied IED11;

28 ied IED12;

29 ied IED13;

30 ied IED14;

31 ied IED17;

32 ied IED18;

33 ied IED19;

34 ied IED20;

35 ied IED23;

36 ied IED24;

37

38 // these are the possible line states

39 mtype = { NO_DATA, NORMAL, SPECIAL, SUSPECT, FAULTED };

40 // these are the possible directional relay states

41 mtype = { LINE_FAULT, BUS_FAULT, NONE };

42 // these are the possible primary and secondary relay states

43 mtype = { FAULT, NO_FAULT };

44

45 // these are the arrays that hold the verdicts for the 4 line states for each of the 4 LDAs

46 mtype LDA15Verdict[4] = { NO_DATA, NO_DATA, NO_DATA, NO_DATA };

47 mtype LDA12Verdict[4] = { NO_DATA, NO_DATA, NO_DATA, NO_DATA };

48 mtype LDA14Verdict[4] = { NO_DATA, NO_DATA, NO_DATA, NO_DATA };

49 mtype LDA09Verdict[4] = { NO_DATA, NO_DATA, NO_DATA, NO_DATA };

50

51 // this is an array of 4 channels, 1 for each line L9, L12, L14, L15, each capable of holding 4 msgs

52 // the message itself will be a 4-tuple containing:

53 // line number, line state, Fout value, and number of protection actions

54 chan LDAChan[4] = [4] of { byte, mtype, short, byte };

55

56 // these bools help SPIN run faster by dictating the order the LDAs fire

57 bool line15Started = false;

58 bool line12Started = false;

59 bool line14Started = false;

60

61 // before and after the init function, there are lots of macros. PROMELA doesn't support functions

62 // so this "hack" makes the code somewhat modular and maintainable, although macros aren't nearly as

63 // easy to read as functions, so the code is more complex than I would have liked

64

65 // this is a utility for setting the state variables on an IED

66 #define initIED(iedXX, num, dirState, priState, secState) \

89

67 iedXX.id = num; \

68 iedXX.dir = dirState; \

69 iedXX.pri = priState; \

70 iedXX.sec = secState

71

72 // these are the normal states of all 24 IEDS when a fault occurs on L15

73 #define initIEDStatesForL15Fault() \

74 initIED(IED29, 29, LINE_FAULT, FAULT, NO_FAULT); \

75 initIED(IED30, 30, LINE_FAULT, FAULT, NO_FAULT); \

76 initIED(IED28, 28, BUS_FAULT, NO_FAULT, NO_FAULT); \

77 initIED(IED27, 27, LINE_FAULT, NO_FAULT, NO_FAULT); \

78 initIED(IED22, 22, BUS_FAULT, NO_FAULT, NO_FAULT); \

79 initIED(IED21, 21, LINE_FAULT, NO_FAULT, NO_FAULT); \

80 initIED(IED16, 16, BUS_FAULT, NO_FAULT, NO_FAULT); \

81 initIED(IED15, 15, LINE_FAULT, NO_FAULT, NO_FAULT); \

82 initIED(IED14, 14, BUS_FAULT, NO_FAULT, NO_FAULT); \

83 initIED(IED13, 13, LINE_FAULT, NO_FAULT, NO_FAULT); \

84 initIED(IED23, 23, LINE_FAULT, NO_FAULT, NO_FAULT); \

85 initIED(IED24, 24, BUS_FAULT, NO_FAULT, NO_FAULT); \

86 initIED(IED04, 4, BUS_FAULT, NO_FAULT, NO_FAULT); \

87 initIED(IED03, 3, LINE_FAULT, NO_FAULT, NO_FAULT); \

88 initIED(IED08, 8, BUS_FAULT, NO_FAULT, NO_FAULT); \

89 initIED(IED07, 7, LINE_FAULT, NO_FAULT, NO_FAULT); \

90 initIED(IED06, 6, BUS_FAULT, NO_FAULT, NO_FAULT); \

91 initIED(IED05, 5, LINE_FAULT, NO_FAULT, NO_FAULT); \

92 initIED(IED12, 12, BUS_FAULT, NO_FAULT, NO_FAULT); \

93 initIED(IED11, 11, LINE_FAULT, NO_FAULT, NO_FAULT); \

94 initIED(IED17, 17, BUS_FAULT, NO_FAULT, NO_FAULT); \

95 initIED(IED18, 18, LINE_FAULT, NO_FAULT, NO_FAULT); \

96 initIED(IED19, 19, LINE_FAULT, NO_FAULT, NO_FAULT); \

97 initIED(IED20, 20, BUS_FAULT, NO_FAULT, NO_FAULT)

98

99 // these are the 4 failure scenarios from Tong’s WABPS research paper

100 // in simulation mode, one scenario will be selected nondeterministically

101 // in verification mode, they will all be tested

102 #define papersTestScenarios() \

103 if \

104 ::printf("Scenario A test\n"); \

105 initIED(IED29, 29, NONE, NO_FAULT, NO_FAULT); \

106 initIED(IED30, 30, NONE, NO_FAULT, NO_FAULT); \

107 ::printf("Scenario A test\n"); \

108 initIED(IED28, 28, LINE_FAULT, NO_FAULT, FAULT); \

109 initIED(IED16, 16, BUS_FAULT, NO_FAULT, FAULT); \

110 ::printf("Scenario C test\n"); \

111 initIED(IED30, 30, NONE, FAULT, NO_FAULT); \

112 initIED(IED22, 22, NONE, NO_FAULT, NO_FAULT); \

113 ::printf("Scenario D test\n"); \

114 initIED(IED29, 29, BUS_FAULT, FAULT, NO_FAULT); \

115 initIED(IED30, 30, LINE_FAULT, NO_FAULT, NO_FAULT); \

116 initIED(IED28, 28, LINE_FAULT, NO_FAULT, NO_FAULT); \

117 initIED(IED22, 22, LINE_FAULT, NO_FAULT, NO_FAULT); \

118 fi

119

120 // this is the test for when any given component of an IED can fail

121 #define corruptIEDComponent(iedXX) \

122 if \

123 ::(!iedXX.dirOn)->iedXX.dir = LINE_FAULT; iedXX.dirOn=true; printf("Corrupted Component IED%d, dir

= LINE_FAULT\n", iedXX.id); \

124 ::(!iedXX.dirOn)->iedXX.dir = BUS_FAULT; iedXX.dirOn=true; printf("Corrupted Component IED%d, dir

= BUS_FAULT\n", iedXX.id); \

125 ::(!iedXX.dirOn)->iedXX.dir = NONE; iedXX.dirOn=true; printf("Corrupted Component IED%d, dir

= NONE\n", iedXX.id); \

126 ::(!iedXX.priOn)->iedXX.pri = FAULT; iedXX.priOn=true; printf("Corrupted Component IED%d, pri

= FAULT\n", iedXX.id); \

127 ::(!iedXX.priOn)->iedXX.pri = NO_FAULT; iedXX.priOn=true; printf("Corrupted Component IED%d, pri

= NO_FAULT\n", iedXX.id); \

128 ::(!iedXX.secOn)->iedXX.sec = FAULT; iedXX.secOn=true; printf("Corrupted Component IED%d, sec

= FAULT\n", iedXX.id); \

90

129 ::(!iedXX.secOn)->iedXX.sec = NO_FAULT; iedXX.secOn=true; printf("Corrupted Component IED%d, sec

= NO_FAULT\n", iedXX.id); \

130 fi

131

132 // this is the test when an entire IED can fail

133 #define turnOffIED(iedXX) \

134 printf("Turned Off IED%d\n", iedXX.id); \

135 iedXX.dir = NONE; iedXX.dirOn=true; \

136 iedXX.pri = NO_FAULT; iedXX.priOn=true; \

137 iedXX.sec = NO_FAULT; iedXX.secOn=true;

138

139 // this checks that the IED can be selected by the tests by making sure it hasn't been

140 // totally corrupted yet

141 #define iedIsSelectable(iedXX) \

142 !(iedXX.dirOn && iedXX.priOn && iedXX.secOn)

143

144 // test that at least 1 of the LDAs identified the fault on L15 (weak correctness)

145 #define verifyL15Fault() \

146 assert (LDA15Verdict[0] == FAULTED || LDA12Verdict[0] == FAULTED || LDA14Verdict[0] == FAULTED ||

LDA09Verdict[0] == FAULTED)

147

148 // test that no LDA determined any other line was faulted (strong correctness)

149 #define verifyOnlyL15Fault() \

150 assert (LDA15Verdict[1] != FAULTED && LDA15Verdict[2] != FAULTED && LDA15Verdict[3] != FAULTED); \

151 assert (LDA12Verdict[1] != FAULTED && LDA12Verdict[2] != FAULTED && LDA12Verdict[3] != FAULTED); \

152 assert (LDA14Verdict[1] != FAULTED && LDA14Verdict[2] != FAULTED && LDA14Verdict[3] != FAULTED); \

153 assert (LDA09Verdict[1] != FAULTED && LDA09Verdict[2] != FAULTED && LDA09Verdict[3] != FAULTED)

154

155 // this is the generic test method

156 // the first arg is a "function pointer" to the specific failure to be tested

157 // the second arg is the maximum number of failures to be tested

158 #define test(failureType, maxFailures) \

159 failuresSoFar = 0; \

160 do \

161 ::(failuresSoFar < maxFailures) -> \

162 if \

163 ::(iedIsSelectable(IED29))->failureType(IED29); \

164 ::(iedIsSelectable(IED30))->failureType(IED30); \

165 ::(iedIsSelectable(IED28))->failureType(IED28); \

166 ::(iedIsSelectable(IED27))->failureType(IED27); \

167 ::(iedIsSelectable(IED22))->failureType(IED22); \

168 ::(iedIsSelectable(IED21))->failureType(IED21); \

169 ::(iedIsSelectable(IED16))->failureType(IED16); \

170 ::(iedIsSelectable(IED15))->failureType(IED15); \

171 ::(iedIsSelectable(IED14))->failureType(IED14); \

172 ::(iedIsSelectable(IED13))->failureType(IED13); \

173 ::(iedIsSelectable(IED23))->failureType(IED23); \

174 ::(iedIsSelectable(IED24))->failureType(IED24); \

175 ::(iedIsSelectable(IED04))->failureType(IED04); \

176 ::(iedIsSelectable(IED03))->failureType(IED03); \

177 ::(iedIsSelectable(IED08))->failureType(IED08); \

178 ::(iedIsSelectable(IED07))->failureType(IED07); \

179 ::(iedIsSelectable(IED06))->failureType(IED06); \

180 ::(iedIsSelectable(IED05))->failureType(IED05); \

181 ::(iedIsSelectable(IED12))->failureType(IED12); \

182 ::(iedIsSelectable(IED11))->failureType(IED11); \

183 ::(iedIsSelectable(IED17))->failureType(IED17); \

184 ::(iedIsSelectable(IED18))->failureType(IED18); \

185 ::(iedIsSelectable(IED19))->failureType(IED19); \

186 ::(iedIsSelectable(IED20))->failureType(IED20); \

187 fi; \

188 failuresSoFar++; \

189 ::else -> break; \

190 od

191

192 init {

193 // modify this to measure a particular fault tolerance degree

194 byte numSingleComponentFailuresToTest = 1;

195 byte numTotalIEDFailuresToTest = 1;

91

196 byte failuresSoFar = 0

197

198 initIEDStatesForL15Fault();

199

200 // these are a list of tests that may be executed, some will be commented out

201 //testPapersFailureScenarios();

202 //test(corruptIEDComponent, numSingleComponentFailuresToTest);

203 test(turnOffIED, numTotalIEDFailuresToTest);

204

205 // this is atomic so the verification mode will run faster

206 // arbirary interleavings do not change the results, so I am not

207 // making SPIN perform them all

208 atomic {

209 run LDA15(0, 15);

210 run LDA12(1, 12);

211 run LDA14(2, 14);

212 run LDA09(3, 9);

213 }

214

215 // this blocks the init process until all the LDAs have completed

216 do

217 ::timeout -> break

218 od;

219

220 verifyL15Fault(); // weak correctness test

221 verifyOnlyL15Fault(); // strong correctness test

222

223 }

224

225 // the formula is at the bottom of page 1198 in Tong’s paper,

226 // but this is the C code which shows how it was meant to be implemented:

227 // if (directional == 1) {

228 // if (primary_relay == 1) {

229 // AF = 1;

230 // } else if (second_relay == 1) {

231 // AF = 0.5;

232 // }

233 // } else if ((directional == -1) && (primary_relay == 0) && (second_relay == 0)) {

234 // AF = -1;

235 // } else {

236 // AF = 0;

237 // }

238 // the values had to be mapped to ints since SPIN doesn't support floating point numbers:

239 // 1 -> 2

240 // .5 -> 1

241 // -1 -> -2

242 // 0 -> 0

243 #define calcAF(iedXX, af) \

244 if \

245 ::((iedXX.dir == LINE_FAULT) && (iedXX.pri == FAULT)) -> af = 2; \

246 ::((iedXX.dir == LINE_FAULT) && (iedXX.sec == FAULT) && (iedXX.pri == NO_FAULT)) -> af = 1; \

247 ::((iedXX.dir == BUS_FAULT) && (iedXX.pri == NO_FAULT) && (iedXX.sec == NO_FAULT)) -> af = -2; \

248 ::else -> af = 0; \

249 fi

250

251 #define calcNumberOfProtectionActions(iedXX) \

252 if \

253 ::(iedXX.dir != NONE) -> lineProtectionActions++; \

254 ::else -> skip; \

255 fi; \

256 if \

257 ::(iedXX.pri == FAULT) -> lineProtectionActions++; \

258 ::else -> skip; \

259 fi; \

260 if \

261 ::(iedXX.sec == FAULT) -> lineProtectionActions++; \

262 ::else -> skip; \

263 fi

264

92

265 // this is taken from the bottom of the right column on page 1198

266 #define Fset 2

267 #define calcLineStateFromFout() \

268 if \

269 ::(Fout < 0) -> lineState = NORMAL; \

270 ::((Fout >= 0) && (Fout < Fset)) -> lineState = SPECIAL; \

271 ::(Fout == Fset) -> lineState = SUSPECT; \

272 ::else -> lineState = FAULTED; \

273 fi

274

275 // STEP 1: calculate the AF value, which is based on the state of the IEDs on my line

276 #define doStage1(iedXX, iedYY) \

277 calcAF(iedXX, af1); \

278 calcAF(iedYY, af2); \

279 Fout = af1 + af2; \

280 lineProtectionActions = 0; \

281 calcNumberOfProtectionActions(iedXX); \

282 calcNumberOfProtectionActions(iedYY); \

283 calcLineStateFromFout(); \

284 printf("Step 1 - L%d State: %e\n", actualLine, lineState);

285

286 // do not have type double, but the rule is if at least half of the indicators

287 // indicate a fault, then the threshold is exceeded

288 #define calcCF(sharedBus, nonSharedBus, cnt, cfThresholdExceeded) \

289 sum = 0; \

290 sbIndex = 0; \

291 do \

292 ::(sbIndex < cnt) -> \

293 if \

294 ::(sharedBus[sbIndex].dir == BUS_FAULT) -> sum++; \

295 ::else -> skip; \

296 fi; \

297 sbIndex++; \

298 ::(sbIndex == cnt) -> break; \

299 od; \

300 nsbIndex = 0; \

301 do \

302 ::(nsbIndex < cnt) -> \

303 if \

304 ::(nonSharedBus[nsbIndex].dir == LINE_FAULT) -> sum++; \

305 ::else -> skip; \

306 fi; \

307 nsbIndex++; \

308 ::(nsbIndex == cnt) -> break; \

309 od; \

310 cfThresholdExceeded = ((sum*2) >= cnt)

311

312 // both have to be above the threshold to move from SPECIAL to SUSPECT

313 #define calcLineStateFromCFs() \

314 if \

315 ::(cf1ThresholdExceeded && cf2ThresholdExceeded) -> lineState = SUSPECT; \

316 ::else -> lineState = NORMAL; \

317 fi

318

319 // STEP 2: if we are in SPECIAL state, either escalate to SUSPECT or de-escalate to NORMAL

320 // which is based on CF values, which are calculated the IEDs on neighboring lines

321 #define doStage2() \

322 if \

323 ::(lineState == SPECIAL) -> \

324 calcCF(cf1SB, cf1NSB, cf1Cnt, cf1ThresholdExceeded); \

325 calcCF(cf2SB, cf2NSB, cf2Cnt, cf2ThresholdExceeded); \

326 calcLineStateFromCFs(); \

327 ::else -> skip; \

328 fi; \

329 printf("Step 2 - L%d State: %e\n", actualLine, lineState)

330

331 // STEP 3: if we are in SUSPECT state, either escalate to FAULT or de-escalate to NORMAL

332 // However, if we de-escalate to NORMAL, then we must determine another line to have a FAULT

333 // this is based on the fault state of neighboring lines

93

334 #define doStage3(verdict) \

335 sendStateToNeighbors(); \

336 if \

337 ::(lineState == SUSPECT) -> \

338 receiveStateFromNeighbors(verdict); \

339 ::else -> skip; \

340 fi; \

341 if \

342 ::(lineState == SUSPECT) -> \

343 resolveSuspectState(verdict); \

344 ::else -> skip; \

345 fi; \

346 printf("Step 3 - L%d State: %e\n", actualLine, lineState); \

347 verdict[lineNumber] = lineState

348

349 #define sendStateToNeighbors() \

350 sendLineNum = 0; \

351 do \

352 ::(sendLineNum < 4) -> \

353 if \

354 ::(sendLineNum != lineNumber) -> LDAChan[sendLineNum]!lineNumber(lineState, Fout,

lineProtectionActions); \

355 ::else -> skip; \

356 fi; \

357 sendLineNum++; \

358 ::(sendLineNum == 4) -> break; \

359 od

360

361 #define receiveStateFromNeighbors(verdict) \

362 msgsRcvd = 0; \

363 maxFout = Fout; \

364 maxProtectionActions = 0; \

365 maxFoutLineNumber = lineNumber; \

366 do \

367 ::(msgsRcvd < 3) -> LDAChan[lineNumber]?neighborLineNumber(neighborLineState, neighborFout,

neighborProtectionActions); \

368 msgsRcvd++; \

369 if \

370 ::(neighborLineState == FAULTED) -> \

371 lineState = NORMAL; \

372 verdict[neighborLineNumber] = FAULTED; \

373 break; \

374 ::(neighborLineState == NORMAL) -> skip; \

375 ::(neighborLineState == SUSPECT) -> \

376 if \

377 ::((neighborFout > maxFout) || \

378 ((neighborFout == maxFout) && (neighborProtectionActions > lineProtectionActions))) -> \

379 maxFout = neighborFout; \

380 maxFoutLineNumber = neighborLineNumber; \

381 maxProtectionActions = neighborProtectionActions; \

382 ::else -> skip; \

383 fi; \

384 ::else -> skip; \

385 fi; \

386 ::(msgsRcvd == 3) -> break; \

387 od; \

388

389 #define resolveSuspectState(verdict) \

390 if \

391 ::(maxFout > Fout) -> \

392 lineState = NORMAL; \

393 verdict[maxFoutLineNumber] = FAULTED; \

394 ::(maxFout == Fout) -> \

395 if \

396 ::(maxProtectionActions > lineProtectionActions) -> \

397 lineState = NORMAL; \

398 verdict[maxFoutLineNumber] = FAULTED; \

399 ::(maxProtectionActions == lineProtectionActions) -> \

400 lineState = FAULTED; \

94

401 verdict[maxFoutLineNumber] = FAULTED; \

402 ::else -> \

403 lineState = FAULTED; \

404 verdict[maxFoutLineNumber] = NORMAL; \

405 fi; \

406 ::else -> lineState = FAULTED; \

407 fi

408

409 #define initVars() \

410 mtype lineState = NO_DATA; \

411 short af1; \

412 short af2; \

413 short Fout; \

414 byte lineProtectionActions; \

415 byte sbIndex; \

416 byte nsbIndex; \

417 bool cf1ThresholdExceeded; \

418 bool cf2ThresholdExceeded; \

419 byte sum; \

420 byte sendLineNum; \

421 byte msgsRcvd; \

422 mtype neighborLineState; \

423 short neighborFout; \

424 byte neighborLineNumber; \

425 byte neighborProtectionActions; \

426 short maxFout; \

427 byte maxFoutLineNumber; \

428 byte maxProtectionActions

429

430 // SB stands for Shared Bus, NSB stands for Non Shared Bus

431 #define initIEDArrays(cnt1, cnt2) \

432 byte cf1Cnt = cnt1; \

433 byte cf2Cnt = cnt2; \

434 ied cf1SB[cnt1]; \

435 ied cf1NSB[cnt1]; \

436 ied cf2SB[cnt2]; \

437 ied cf2NSB[cnt2]

438

439 #define initArray(arr, iedXX, i) \

440 arr[i].id = iedXX.id; \

441 arr[i].dir = iedXX.dir; \

442 arr[i].pri = iedXX.pri; \

443 arr[i].sec = iedXX.sec

444

445 #define runAlgorithm(iedXX, iedYY, verdict) \

446 printf("LDA%d Start\n", actualLine); \

447 doStage1(iedXX, iedYY); \

448 doStage2(); \

449 doStage3(verdict); \

450 printf("LDA%d Final: L15:%e, L12:%e, L14:%e, L9:%e\n", actualLine, verdict[0], verdict[1],

verdict[2], verdict[3])

451

452 // NAME PRIMARY CF1_SHARED CF1_NONSHARED CF2_SHARED CF2_NONSHARED

453 // LDA15 (29, 30) (22, 28) (21, 27) (16) (15)

454 proctype LDA15(byte lineNumber, actualLine) {

455 atomic {

456 line15Started = true;

457 initVars();

458 initIEDArrays(2, 1);

459 initArray(cf1SB, IED22, 0);

460 initArray(cf1SB, IED28, 1);

461 initArray(cf1NSB, IED21, 0);

462 initArray(cf1NSB, IED27, 1);

463 initArray(cf2SB, IED16, 0);

464 initArray(cf2NSB, IED15, 0);

465 runAlgorithm(IED29, IED30, LDA15Verdict);

466 }

467 }

468

95

469 // NAME PRIMARY CF1_SHARED CF1_NONSHARED CF2_SHARED CF2_NONSHARED

470 // LDA12 (21, 22) (28, 29) (27, 30) (4, 6, 14, 19, 23) (3, 5, 13, 20, 24)

471 proctype LDA12(byte lineNumber, actualLine) {

472 atomic {

473 line15Started->skip;

474 line12Started = true;

475 initVars();

476 initIEDArrays(2, 5);

477 initArray(cf1SB, IED28, 0);

478 initArray(cf1SB, IED29, 1);

479 initArray(cf1NSB, IED27, 0);

480 initArray(cf1NSB, IED30, 1);

481 initArray(cf2SB, IED04, 0);

482 initArray(cf2SB, IED06, 1);

483 initArray(cf2SB, IED14, 2);

484 initArray(cf2SB, IED19, 3);

485 initArray(cf2SB, IED23, 4);

486 initArray(cf2NSB, IED03, 0);

487 initArray(cf2NSB, IED05, 1);

488 initArray(cf2NSB, IED13, 2);

489 initArray(cf2NSB, IED20, 3);

490 initArray(cf2NSB, IED24, 4);

491 runAlgorithm(IED21, IED22, LDA12Verdict);

492 }

493 }

494

495 // NAME PRIMARY CF1_SHARED CF1_NONSHARED CF2_SHARED CF2_NONSHARED

496 // LDA14 (27, 28) (22, 29) (21, 30) (24) (23)

497 proctype LDA14(byte lineNumber, actualLine) {

498 atomic {

499 line12Started->skip;

500 line14Started = true;

501 initVars();

502 initIEDArrays(2, 1);

503 initArray(cf1SB, IED22, 0);

504 initArray(cf1SB, IED29, 1);

505 initArray(cf1NSB, IED21, 0);

506 initArray(cf1NSB, IED30, 1);

507 initArray(cf2SB, IED24, 0);

508 initArray(cf2NSB, IED23, 0);

509 runAlgorithm(IED27, IED28, LDA14Verdict);

510 }

511 }

512

513 // NAME PRIMARY CF1_SHARED CF1_NONSHARED CF2_SHARED CF2_NONSHARED

514 // LDA9 (15, 16) (30) (29) (8, 12, 13, 17) (7, 11, 14, 18)

515 proctype LDA09(byte lineNumber, actualLine) {

516 atomic {

517 line14Started->skip;

518 initVars();

519 initIEDArrays(1, 4);

520 initArray(cf1SB, IED30, 0);

521 initArray(cf1NSB, IED29, 0);

522 initArray(cf2SB, IED08, 0);

523 initArray(cf2SB, IED12, 1);

524 initArray(cf2SB, IED13, 2);

525 initArray(cf2SB, IED17, 3);

526 initArray(cf2NSB, IED07, 0);

527 initArray(cf2NSB, IED11, 1);

528 initArray(cf2NSB, IED14, 2);

529 initArray(cf2NSB, IED18, 3);

530 runAlgorithm(IED15, IED16, LDA09Verdict);

531 }

532 }

533

96

Bibliography

[1] E. A. Lee, "Cyber physical systems: design challenges," in 2008 11th IEEE

international symposium on object and component-oriented real-time distributed

computing, Orlando, 2008.

[2] P. McDaniel and S. McLaughlin, "Security and privacy challenges in the smart

grid," IEEE Security and Privacy, vol. 7, no. 3, pp. 75-77, 2009.

[3] N. Jazdi, "Cyber physical systems in the context of Industry 4.0," in 2014 IEEE

international conference on automation, quality and testing, robotics, Cluj-

Napoca, 2014.

[4] K. Zhou, T. Liu and L. Zhou, "Industry 4.0: towards future industrial opportunities

and challenges," in Twelfth international conference on fuzzy systems and

knowledge discovery, Zhangjiajie, 2015.

[5] G. Brown, M. Carlyle, J. Salmeron and K. Wood, "Defending critical infrastructure,"

Interfaces, vol. 36, no. 6, pp. 530-544, 2006.

[6] C. Neuman, "Challenges in security for cyber-physical systems," DHS workshop on

future directions in cyber-physical systems security, Newark, 2009.

[7] K. K. Fletcher and X. Liu, "Security requirements analysis, specification,

prioritization, and policy development in cyber-physical systems," in Fifth

international conference on secure software integration and reliability

improvement companion, Jeju Island, 2011.

[8] U.S. Office of Homeland Security, "National strategy for homeland security," Office

of Homeland Security, Washington, D.C., 2002.

[9] A. Fielder, E. Panaousis, P. Malacaria, C. Hankin and F. Smeraldi, "Game theory

meets information security management," in Proceedings of the twenty-ninth

IFIP TC 11 international conference, Marrakech, 2014.

[10] X. Feng, T. Lu, X. Guo, J. Liu, Y. Peng and Y. Gao, "Security analysis on cyber-

physical systems using attack tree," in Ninth international conference on

intelligent information hiding and multimedia signal processing, Beijing, 2013.

97

[11] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig and S. Sastry, "Challenges

for securing cyber physical systems," Workshop on future directions in cyber-

physical systems security, Newark, 2009.

[12] F. He, J. Zhuang and N. Rao, "Game-theoretic analysis of attack and defense in

cyber-physical network infrastructures," in Proceedings of the industrial and

systems engineering research conference, Orlando, 2012.

[13] C. Y. Ma, N. S. Rao and D. K. Yau, "A game theoretic study of attack and defense

in cyber-physical systems," in IEEE conference on computer communications

workshops, Shanghai, 2011.

[14] R. Vigo, A. Bruni and E. Yuksel, "Security games for cyber-physical systems," in

Proceedings of the eighteenth Nordic conference, Oslo, 2013.

[15] S. Backhaus, R. Bent, J. Bono, R. Lee, B. Tracey, D. Wolpert, D. Xie and Y. Yildiz,

"Cyber-physical security: a game theory model of humans interacting over

control systems," IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2320-

2327, 2013.

[16] M. Tambe, Security and game theory: algorithms, deployed systems, lessons

learned, New York: Cambridge University Press, 2012.

[17] T. Alpcan and T. Basar, A decision and game-theoretic approach, United Kingdom:

Cambridge University Press, 2011.

[18] C. Camerer, Behavioral game theory, Princeton: Princeton University Press, 2003.

[19] A. Arad and A. Rubinstein, "The 11-20 money request game: a level-k reasoning

study," American Economic Review, vol. 102, no. 7, pp. 3561-3573, 2012.

[20] O. Gross and R. Wagner, "A continuous Colonel Blotto game," RAND Corporation,

1950.

[21] A. Arad and A. Rubinstein, "Multi-dimensional iterative reasoning in action: the

case of the Colonel Blotto game," Journal of Economic Behavior &

Organization, vol. 84, no. 2, pp. 571-585, 2012.

98

[22] A. Arad and A. Rubinstein, "Let game theory be?," Calcalist, 11 May 2009.

[23] Lloyds, "Business blackout: the insurance implications of a cyber attack on the U.S.

power grid," Lloyds, London, 2015.

[24] U.S. Department of Energy, "Final report on the August 14, 2003 blackout in the

United States and Canada: causes and recommendations," U.S. Department of

Energy, Washington, D.C., 2004.

[25] K. J. Ross, K. M. Hopkinson and M. Pachter, "Using a distributed agent-based

communication enabled special protection system to enhance smart grid

security," IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 1216-1224, 2013.

[26] F. B. Schneider, "Cybersecurity education in universities," IEEE Security & Privacy,

vol. 11, no. 4, pp. 3-4, 2013.

[27] A. McGettick, "Toward curricular guidelines for cybersecurity," 30 August 2013.

[Online]. Available:

http://www.acm.org/education/TowardCurricularGuidelinesCybersec.pdf.

[Accessed 15 March 2016].

[28] The Joint Task Force on Computing Curricula, "Computer science curricula 2013,"

20 December 2013. [Online]. Available: http://www.acm.org/education/CS2013-

final-report.pdf. [Accessed 15 March 2016].

[29] The National Security Agency, "Academic requirements for designation as a center

of academic excellence in cyber operations," 9 November 2015. [Online].

Available:

https://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_requirements.sht

ml. [Accessed 15 March 2016].

[30] M. Dark and J. Mirkovic, "Evaluation theory and practice applied to cybersecurity

education," IEEE Security & Privacy, vol. 13, no. 2, pp. 75-80, 2015.

[31] American Psychology Association, "Glossary of psychological terms," American

Psychology Association, [Online]. Available:

http://www.apa.org/research/action/glossary.aspx?tab=3. [Accessed 15 March

2016].

99

[32] R. Sternberg, The triarchic mind, New York: Penguin Books, 1988.

[33] R. B. Tigner and S. S. Tigner, "Triarchic theories of intelligence: Aristotle and

Sternberg," History of Psychology, vol. 3, no. 2, pp. 168-176, 2000.

[34] R. T. Morris, "A weakness in the 4.2 BSD Unix TCP/IP software," AT&T Bell

Laboratories, Murray Hill, 1985.

[35] K. Hafner and J. Markoff, Cyberpunk, New York: Touchstone, 1995.

[36] E. Levy, "Smashing the stack for fun and profit," Phrack, vol. 7, no. 49, p. 14, 1996.

[37] B. Schneier, "What is a hacker?," 14 September 2006. [Online]. Available:

https://www.schneier.com/blog/archives/2006/09/what_is_a_hacke.html.

[Accessed 15 March 2016].

[38] Wikipedia contributors, "IP fragmentation attack," Wikipedia, 13 January 2016.

[Online]. Available: https://en.wikipedia.org/wiki/IP_fragmentation_attack.

[Accessed 15 March 2016].

[39] E. Skoudis, Counter hack reloaded, Boston: Pearson, 2006.

[40] T. C. Summers, "How hackers think: a study of cybersecurity experts and their

mental models," in Third Annual International Conference on Engaged

Management Scholarship, Atlanta, 2013.

[41] K. Mitnick and W. L. Simon, Ghost in the wires, New York: Back Bay Books, 2012.

[42] C. Stoll, "Stalking the wily hacker," Communications of the ACM, vol. 31, no. 5, pp.

484-497, 1988.

[43] C. Stoll, The cuckoo's egg, New York: Pocket Books, 1990.

[44] G. Conti and J. Caroland, "Embracing the Kobayashi Maru: why you should teach

your students to cheat," IEEE Security & Privacy, vol. 9, no. 4, pp. 48-51, 2011.

[45] B. Mullins, "Developing cyber warriors from computer engineers et al.," in 2012

100

ASEE Annual Conference, San Antonio, TX, 2012.

[46] J. Mirkovic and P. A. H. Peterson, "Class capture-the-flag exercises," in Proceedings

of the USENIX Summit on Gaming, Games and Gamification in Security

Education, San Diego, 2014.

[47] J. Boleng, D. Schweitzer and D. S. Gibson, "Developing cyber warriors," in The 3rd

International Conference on Information Warfare and Security, Omaha, 2008.

[48] Q. Campbell and D. M. Kennedy, "The psychology of computer criminals," in

Computer security handbook, Hoboken, John Wiley & Sons, 2014, pp. 12:1-

12:33.

[49] A. M. Colman, Game theory and its applications, New York: Routledge, 2003.

[50] J. Watson, Strategy: an introduction to game theory, New York: W. W. Norton &

Company, 2013.

[51] A. M. Brandenburger and B. J. Nalebuff, Co-opetition, New York: Doubleday, 1996.

[52] R. Gash, "Game theory: can a round of poker solve Afghanistan's problems?," Small

Wars Journal, pp. 1-4, 2009.

[53] Yale University, "MGT 525: competitive strategy," Yale University, [Online].

Available: http://faculty.som.yale.edu/FionaScottMorton/documents/syll_08.pdf.

[Accessed 15 March 2016].

[54] Indiana University, "G570: thinking strategically: game theory and business

strategy," Indiana University, [Online]. Available:

http://kelley.iu.edu/BEPP/Masters/page14312.cfm?ID=9502. [Accessed 15

March 2016].

[55] J. R. Fraenkel and N. E. Wallen, How to design and evaluate research in education,

New York: McGraw-Hill Higher Education, 2009.

[56] G. J. Holzmann, The SPIN model checker: primer and reference manual, Boston:

Addison-Wesley, 2004.

101

[57] A. Khurram, H. Ali, A. Tariq and O. Hasan, "Formal reliability analysis of

protective relays in power distribution systems," in Proceedings of the 18th

International Workshop on Formal Methods for Industrial Critical Systems,

Madrid, 2013.

[58] M. Moulin, L. Gluhovsky and D. Geist, "Formal verification analysis of load-voltage

power dynamics and control," in World Automation Congress 2004 Proceedings,

Seville, 2004.

[59] NASA, "Gerard Holzmann bio," NASA, 1 December 2009. [Online]. Available:

http://lars-lab.jpl.nasa.gov/people/gh.html. [Accessed 18 May 2016].

[60] F. Wang and J. Tang, "Modeling of a transmission line protection relaying scheme

using petri nets," IEEE Transactions of Power Delivery, vol. 12, no. 3, pp. 1055-

1063, 1997.

[61] G. Ramos, J. L. Sanchez, A. Torres and M. A. Rios, "Power systems security

evaluation using petri nets," IEEE Transactions on Power Delivery, vol. 25, no.

1, pp. 316-322, 2010.

[62] X. Tong, X. Wang and K. M. Hopkinson, "The modeling and verification of peer-to-

peer negotiating multiagent colored petr nets for wide-area backup protection,"

IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 61-72, 2009.

[63] Z. Lin, F. Wen, C. Y. Chung and K. P. Wong, "A survey on the applications of petri

net theory in power systems," in IEEE Power Engineering Society General

Meeting, Montreal, 2006.

[64] T. Murata, "Petri nets: properties, analysis and applications," Proceedings of the

IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[65] A. Sengupta, S. Mukhopadhyay and A. K. Sinha, "Automated verification of power

system protection schemes—part I: modeling and specifications," IEEE

Transactions on Power Delivery, vol. 30, no. 5, pp. 2077-2086, 2015.

[66] T. A. Bopp, R. Ganjavi, R. Krebs, B. Ntsin, M. Dauer and J. Jaeger, "Improving grid

reliability through application of protection security assessment," in 12th IET

International Conference on Developments in Power System Protection,

Copenhagen, 2014.

102

[67] Official SPIN Website, "Inspiring applications of SPIN," Official SPIN Website,

[Online]. Available: http://spinroot.com/spin/success.html. [Accessed 18 May

2016].

[68] F. Schneider, S. M. Easterbrook, J. R. Callahan and G. J. Holzmann, "Validating

requirements for fault tolerant systems using model checking," in Proceedings of

Third International Conference on Requirements Engineering, Colorado Springs,

1998.

[69] A. Gmeiner, I. Konnov, U. Schmid, H. Veith and J. Widder, "Tutorial on

parameterized model checking of fault-tolerant distributed algorithms," in

Formal methods for executable software models, Switzerland, Springer

International Publishing, 2014, pp. 122-171.

[70] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker and M. Deardeuff,

"How Amazon web services uses formal methods," Communications of the

ACM, pp. 66-73, March 2015.

[71] Offical SPIN Website, [Online]. Available: http://spinroot.com/. [Accessed 18 May

2016].

[72] M. Ben-Ari, "A primer on model checking," ACM Inroads, pp. 40-47, Mar 2010.

[73] J. Rushby, "Formal methods and their role in the certification of critical systems," in

Safety and reliability of software based systems, London, Springer-Verlag, 1997,

pp. 1-42.

[74] E. M. Clarke and E. A. Emerson, "Design and synthesis of synchronization skeletons

using branching-time temporal logic," in Logic of programs, workshop, London,

Springer-Verlag, 1981, pp. 52-71.

[75] C. Baier and J.-P. Katoen, Principles of model checking, Cambridge: The MIT

Press, 2008.

[76] X. Tong, X. Wang, R. Wang, F. Huang, X. Dong, K. M. Hopkinson and G. Song,

"The study of a regional decentralized peer-to-peer negotiation-based wide-area

backup protection multi-agent system," IEEE Transactions on Smart Grid, vol.

4, no. 2, pp. 1197-1206, 2013.

103

[77] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman and D. Coury,

"EPOCHS: a platform for agent-based electric power and communication

simulation built from commercial off-the-shelf components," IEEE Transactions

on Power Systems, vol. 21, no. 2, pp. 548-558, 2006.

[78] R. Nagel, "Unraveling in guessing games: an experimental study," The American

Economic Review, vol. 85, no. 5, pp. 1313-1326, 1995.

[79] B. Schneier, "Drugs: sports' prisoner's dilemma," 10 August 2006. [Online].

Available:

https://www.schneier.com/essays/archives/2006/08/drugs_sports_prisone.html.

[Accessed 15 March 2016].

[80] S. J. Brams, Biblical games, Cambridge: MIT Press, 2003.

[81] P. Talwalkar, "Game theory in Numb3rs: hide and seek," 2 December 2009.

[Online]. Available: http://mindyourdecisions.com/blog/2009/12/02/game-

theory-in-numb3rs-hide-and-seek. [Accessed 15 March 2016].

[82] A. Rubinstein, "Experience from a course in game theory: pre and post-class

problem sets as a didactic device," October 1999. [Online]. Available:

http://arielrubinstein.tau.ac.il/99/gt100.html. [Accessed 15 March 2016].

[83] K. Basu, "The traveler's dilemma: paradoxes of rationality in game theory," The

American Economic Review, vol. 84, no. 2, pp. 391-395, 1994.

[84] The Princess Bride film, "The "battle of wits" scene," [Online]. Available:

https://www.youtube.com/watch?v=U_eZmEiyTo0. [Accessed 15 March 2016].

104

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

15-09-2016
2. REPORT TYPE

Doctoral Dissertation
3. DATES COVERED (From – To)

Jan 2013 – Sep 2016

TITLE AND SUBTITLE

Improving the Cybersecurity of Cyber-Physical Systems Through
Behavioral Game Theory and Model Checking in Practice and in
Education

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hamman, Seth T., Mr., Civ.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-DS-16-S-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection
in the United States.

14. ABSTRACT

This dissertation presents automated methods based on behavioral game theory and model checking to
improve the cybersecurity of cyber-physical systems (CPSs) and advocates teaching certain foundational
principles of these methods to cybersecurity students. First, it encodes behavioral game theory’s concept of
level-k reasoning into an integer linear program that models a newly defined security Colonel Blotto game.
This approach is designed to achieve an efficient allocation of scarce protection resources by anticipating
attack allocations. A human subjects experiment based on a CPS infrastructure demonstrates its
effectiveness. Next, it rigorously defines the term adversarial thinking, one of cybersecurity education’s most
important and elusive learning objectives, but for which no proper definition exists. It spells out what it means
to “think like a hacker” by examining the characteristic thought processes of hackers through the lens of
Sternberg’s triarchic theory of intelligence. Next, a classroom experiment demonstrates that teaching basic
game theory concepts to cybersecurity students significantly improves their strategic reasoning abilities.
Finally, this dissertation applies the SPIN model checker to an electric power protection system and
demonstrates a straightforward and effective technique for rigorously characterizing the degree of fault
tolerance of complex CPSs, a key step in improving their defensive posture.
15. SUBJECT TERMS

 behavioral game theory, cyber-physical systems, cybersecurity, education, SPIN model checker

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

117

19a. NAME OF RESPONSIBLE PERSON

Dr. Kenneth M. Hopkinson, AFIT/ENG
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, x4579

kenneth.hopkinson@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

